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Introdu
tion

The 
ontext

It is no easy task to unravel the rather interwoven 
ontext wherein the

present work �nds its pla
e into a sequential thread; and, just as a one-to-one

mapping from the plane onto the line ne
essarily breaks the original topology,

so a sequential exposition 
an but show 
on
epts that are near as they were

far apart. Nevertheless we shall try to des
ribe this 
ontext and give a frame

to the motivations, the goals, the results of this work. The Grand Uni�
ation

of the fundamental for
es of nature, String Theory, The Holographi
 Prin
i-

ple, and General Relativity are the four pillars whereupon this 
ontext rests

(q.v. Pol
hinski [38℄).

The Grand Uni�
ation and String Theory

The quest for a unitary des
ription of nature

1

by means of one fundamental

theory has marked theoreti
al physi
s in this 
entury, and very likely will mark

it in the 
oming 
entury as well.

Two main questions | still unanswered | in this quest are the 
onsistent

quantization of the gravitational �eld and the uni�
ation of the four fundamental

intera
tions at high energies. String Theory appears to be the most promising

theory to solve these questions today.

The key idea in String Theory is that parti
les, i.e. the �elds' quanta, should

be unidimensional, rather than point-like, obje
ts; though their unidimension-

ality should manifest itself at a very mi
ros
opi
al length s
ale | Plan
k's

s
ale, L

P

� 10

�33


m | and so at very high energies, � 10

16

GeV. This simple

idea leads to the solution of the `ultraviolet plague' and to the uni�
ation of the

four fundamental for
es; but String Theory has other good features as well: at

low energies it yields General Relativity as an e�e
tive theory; it in
orporates

most fashionable useful physi
al-mathemati
al 
on
epts su
h as supersimmetry

and symmetry breaking; its mathemati
al form is su
h that many important

parameters (e.g. spa
etime dimensionality) are uniquely determined just by re-

quiring mathemati
al 
onsisten
y.

1

In fa
t, a number of eviden
es seems to show that su
h a des
ription 
ould be non-unitary

instead (in the quantum-me
hani
al sense).

1



Yet String Theory is very 
omplex mathemati
ally | just be
ause it re-

pla
es point-like with unidimensional obje
ts |, and this has been the main

obsta
le against its full a

eptan
e so far; indeed, one 
annot make many uni-

vo
al predi
tions at the energy s
ales whi
h one 
an probe by today's parti
le

a

elerators.

However, re
ent studies emphasize the importan
e of the theory's non-

perturbative stru
ture, where one �nds solutions like D-branes and bla
k

holes, and a re
ent prin
iple is proving to be very useful in this respe
t: the

Holographi
 Prin
iple, whi
h seems to be 
apable of yielding new results from

the theory in regimes that 
annot be perturbatively analysed.

The Holographi
 Prin
iple

The adje
tive `holographi
' refers to the 
oding of a system's whole informa-

tion onto a part of the system itself, e.g. its surfa
e, in analogy with holography,

where three-dimensional opti
al information is 
oded on a (bidimensional) sur-

fa
e.

The Holographi
 Prin
iple was formulated for the �rst time by 't Hooft [46℄,

who showed how di�erent kinds of string theories 
orrespond, or are dual, to

di�erent kinds of gauge theories in the limit-
ase where these have an in�nite

number of 
olour 
harges. This fa
t is the sour
e of many important 
onse-

quen
es. First, the duality is, in 
ertain 
ases, between di�erent energeti
 and


oupling regimes, so that non-perturbative results for a string theory may 
or-

respond to perturbative ones for the dual gauge theory, and vi
e-versa. Then,

sin
e at low energies a string theory redu
es to a gravity theory (possibly with

additional �elds, like e.g. the dilaton �eld), one 
an �nd remnants of the duality

at an e�e
tive-theory level.

A more re
ent and stronger formulation of the Holographi
 Prin
iple is due to

Susskind [43℄, who states that a gravity theory on (four-dimensional) spa
etime

is equivalent to a non-gravitational theory on a (two-dimensional) surfa
e, with

an upper bound for the information(the Holographi
 Bound) of 1 bit per Plan
k

area (L

P

2

); this bound 
omes from the fa
t that infrared e�e
ts in the bulk

theory 
orrespond to ultraviolet e�e
ts in the surfa
e theory (q.v. Susskind and

Witten [44℄).

When the 
oupling 
onstant of the dual gauge theory does not depend on

the energy s
ale, then the dual gauge theory is 
onformally invariant. Sin
e the


onformal group in D dimensions is isomorphi
 to SO(D; 2)

2

, the dual string

theory must 
ontain this symmetry group; this in turn implies that the manifold

whereupon the string theory lives must be AdS

D+1

� S

D+1

, where AdS

n

is n-

dimensional anti-de Sitter spa
e. Following the prin
iple further, a great number

of 
olour 
harges 
orresponds to low energy regimes of the string theory, whi
h

thus redu
es to a gravity theory on (D+1)-dimensional anti-de Sitter spa
e. So,

in this 
ase, the Holographi
 Prin
iple appears as a duality prin
iple between

D-dimensional 
onformal �eld theory and gravity theory on (D+1)-dimensional

2

Ex
ept for D = 1 and D = 2, where it is in�nite-dimensional.

2



anti-de Sitter spa
e, as stated by Malda
ena [35℄, and many interesting results

and interesting interpretations of known results emerge from this duality. As

an example, for D = 4 the prin
iple puts into 
orresponden
e non-perturbative

Yang-Mills theory with low-energy gravity theory, so that by studying the latter

one obtains results 
on
erning the former. For D � 2 the opposite situation

happens: 
onformal symmetry be
omes in�nite-dimensional and one 
an study

the 
onformal �eld theory in order to solve problems of the gravity theory;

indeed one has a glimpse of a possible statisti
al interpretation for the entropy

of a three-dimensional bla
k hole.

Gravity theory on (D+1)-dimensional anti-de Sitter spa
e has got one

more dimension than the 
onformal dual theory, whi
h lives on D-dimensional

Minkowski spa
e (short of topologi
al identi�
ations). Sin
e the boundary of

anti-de Sitter spa
e is 
onformal to Minkowski spa
e, one �nds it natural to

suppose that the dual theory should be some way related to this boundary.

An exa
t 
orresponden
e between the two theories is not at hand yet, but re-

markable improvements have been made thanks to the identi�
ation of the two

theories' symmetries: sin
e the dual 
onformal theory is related to the bound-

ary of anti-de Sitter spa
e at in�nity, its symmetries are identi�ed with the

asymptoti
 symmetries of anti-de Sitter spa
e.

Asymptoti
 symmetries are the symmetries that a gravity theory possesses

at in�nity. They are studied by spe
ifying suitable asymptoti
 
onditions for

the �elds of the theory. Charges are asso
iated to the asymptoti
 symmetries:

usual 
harges like mass or angular momentum, but also other 
harges whi
h

make the algebra of the symmetry generators highly untrivial. The most famous


ase is three-dimensional anti-de Sitter spa
e, and was studied by Brown and

Henneaux [14℄ at the end of the eighties; in this 
ase the asymptoti
 symmetries


onstitute an in�nite-dimensional group whose generators forms two 
opies of

a Virasoro algebra with a de�nite 
entral 
harge: this group is a
tually the

group of 
onformal transformations in two dimensions. Having a 
orresponden
e

between the symmetry groups of the two theories, one 
an go on to suppose a


orresponden
e between states, and 
an 
ount the mi
rostates in the 
onformal

theory 
orresponding to a given ma
rostate whi
h is represented by a bla
k

hole in the gravity theory. Thus one 
an 
al
ulate, by statisti
al means, bla
k-

hole entropy | a quantity whi
h had always been 
omputable by semi
lassi
al

thermodynami
 means only.

The Holographi
 Prin
iple 
ould be also a way to work out the so-
alled

information paradox, 
onsisting in the fa
t that a bla
k hole, eventually, evapo-

rates 
ompletely, a

ording to semi
lassi
al predi
tions, and thus all information

that has been trapped inside its surfa
e during its formation pro
ess gets lost.

The paradox might be solved, for the information would not really be trapped

inside the event horizon, but rather would be found 
oded on the boundary.

Thus one 
an see how the Holographi
 Prin
iple should some way manifest

itself even at a semi
lassi
al or 
lassi
al level, within General Relativity.

3



General Relativity

It is a general 
hara
teristi
 of gravity theories the possibility of 
oding all

the system physi
al information, or part thereof, on a surfa
e; this possibility is

mathemati
ally shown by the fa
t that the system's 
harges appear as surfa
e

integrals. This is due to the di�eomorphism-invarian
e of the theory: a kind of

invarian
e whi
h introdu
es many unphysi
al, gauge degrees of freedom. The

idea here is that all e�e
tive, physi
al degrees of freedom 
an be found on the

system boundary.

The development of a Hamiltonian formalism for gravity theory has helped

to shed light on this point. In the Hamiltonian formalism, indeed, it is of

great importan
e the distin
tion between the system's phase-spa
e 
oordinates

on the one hand, and the time 
oordinate, whi
h marks the system's evolution

and dynami
s, on the other hand; or, in short, the distin
tion between spa
e

and time. As soon as a gravity theory is formulated in a Hamiltonian form, a

profound di�eren
e is set up between spatial 
oordinates and the temporal one:

di�eomorphism-invarian
e almost disappears, but at the same time almost all

unphysi
al degrees of freedom disappear as well.

An interesting feature of the gravitational Hamiltonian, as opposed to the

Hamiltonians of other theories, is that it needs a boundary integral to be well-

de�ned, as was 
learly shown by Regge and Teitelboim [39℄. More re
ently,

York [47℄ demonstrated that the gravitational Lagrangian needs additive bound-

ary terms as well, in order to yield a better de�ned variational prin
iple. So

a new interest has 
ourished, in these years, just in those surfa
e terms that

university students learn to dis
ard after applying Stokes' Theorem in the vari-

ational 
al
ulation. The Hamiltonian boundary terms yield the system's (
on-

served) 
harges, and, following Brown and York's quasilo
al formalism [17℄, the

Lagrangian boundary terms lead to (
onserved) quantities as well.

The exa
t form of the boundary integral is still an obje
t of resear
h and

dis
ussion in the literature, though; spe
ial problems remain in �nding a general

expression for that part of the integral, the so-
alled `
ounterterm', whi
h allows

one to obtain renormalised results when the system's boundary is pushed to

in�nity. A way for its 
onstru
tion has long been adopted, that refers to a

ba
kground spa
etime or `ground state'; more re
ently another, `intrinsi
' way,

whi
h refers to the boundary geometri
al obje
ts, has been proposed [5℄. Both

these methods rest on reasonable theoreti
al grounds, but some ambiguities

make them unsteady; anyway, it is 
lear that they are more similar to ea
h

other than it may seem, and that they are asymptoti
ally equivalent [33℄.

The way toward a general exa
t expression for the boundary terms lies upon

a deeper understanding of the relationship between the ground state and the

ex
ited states (say, bla
k-hole states) of the theory. From the point of view of

the Holographi
 Prin
iple, �nding a general 
orre
t expression is important for


orre
tly obtaining the 
harges asso
iated to the asymptoti
 symmetries and,

hen
e, to the dual theory.

4



The present work

In the previously outlined 
ontext, the present work moves along the three

dire
tions that follow.

The suitable asymptoti
 
onditions for a three-dimensional dilatoni
 theory

(of the Ja
kiw-Teitelboim kind) on anti-de Sitter spa
e will be studied; then
e

the asymptoti
 symmetries and the 
harges will be obtained. A 
omparison

with the 
orresponding three-dimensional non-dilatoni
 theory will be made,

examining how the dilaton's presen
e breaks the symmetries: we shall �nd

that the symmetries form a �nite-dimensional group (the ground-state isometry

group), unlike the non-dilatoni
 
ase where the group has in�nite dimensions;

but the presen
e of the dilaton leads to diverging 
harges, for
ing the group to

be even smaller in order to avoid them.

A dis
ussion will be made about the way Brown and York's formalism 
an be

applied to the study of asymptoti
 symmetries and the 
al
ulation of their asso-


iated 
harges; some expli
it 
al
ulations in anti-de Sitter spa
e (for the three-

and two-dimensional dilatoni
 
ases, and the three-dimensional non-dilatoni



ase) will be given as examples, and a 
omparison with the already known re-

sults found through the Hamiltonian method will be made. We shall see how

Brown and York's formalism is not 
ompletely �t for studying the asymptoti


symmetries, neither are some Hamiltonian boundary terms re
ently proposed

in the literature.

Moreover, in the 
al
ulations for the two-dimensional 
ase, we shall use both

the ba
kground referen
e 
ounterterm and the intrinsi
 
ounterterm, 
omparing

them, and pointing out the ambiguities whi
h a�e
t the latter in the presen
e

of a dilatoni
 �eld.

Stru
ture of the dis
ussion

The present work is stru
tured into four 
hapters.

In the �rst 
hapter, the main 
on
epts and obje
ts whi
h will serve for the

subsequent 
al
ulations are de�ned: the manifold whi
h hosts the metri
 and

dilaton �elds, its boundary, the Lagrangian and Hamiltonian formulations of

gravity theory, anti-de Sitter spa
e and bla
k-hole solutions.

The 
on
epts of asymptoti
 
ondition, asymptoti
 symmetry, and asso
iated


harge are de�ned in the se
ond 
hapter, and the Hamiltonian and Brown and

York's methods for 
omputing the 
harges are outlined; a dis
ussion about the

generalisation of the latter method to a dilatoni
 theory is made. Some of the

boundary terms proposed so far in the literature are examined and 
ompared.

In the third 
hapter expli
it 
al
ulations of the asymptoti
 
onditions and

symmetries and 
harges for gravity on two- and three-dimensional anti-de Sitter

spa
e, with and without dilaton �eld, are made; �rst through Hamiltonian for-

malism and then through Brown and York's formalism; both ba
kground and

intrinsi
 
ounterterms are used. The statisti
al method for entropy 
al
ulation

through the 
onformal dual theory is sket
hed.

Finally, �nal remarks and 
on
lusions are left to the fourth 
hapter.

5
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Chapter 1

Generalia

1.1 De�nitions

1.1.1 Notation

The following typographi
al 
onventions will be used to distinguish among

di�erent geometri
al obje
ts: s
alars and tensors will be in itali
 (e.g. �, T

��

),

s
alar and tensor densities in boldfa
e itali
 (e.g. P

ab

, �

�

,

p

�g ,

p

h ),

operators in boldfa
e Roman (e.g. r, D, L), manifolds in 
alligraphi
 style

(e.g. M, B), integrals in Fraktur (e.g. L, J); D-dimensional Minkowski spa
e

is M

D

, and �nally see next se
tion for 
onvention on tensor indi
es.

Integrals will not show 
oordinates (d

D

x, et
.) | easily inferable from the

integration manifold, whi
h will always be indi
ated |, ex
ept in 
ases of non-

generi
 dimensionality.

The natural system of units (
 = G = } = 1) will be used throughout.

1.1.2 Main geometri
al obje
ts

We shall work on a (D+1)-dimensional di�erentiable manifold M, whose

boundary �M is given by the union of the D-dimensional hypersurfa
es S

0

, S

00

,

and B; the �rst and the se
ond are homeomorphi
 to the interior of S

D

and the

third to S

D�1

� I , where I is a real interval. The interse
tion between S

0

and B

is the (D�1)-dimensional surfa
e P

0

, whi
h is the boundary of S

0

; an analogous

de�nition holds for P

00

; P

0

and P

00


onstitute the (dis
onne
ted) boundary of B.

The surfa
es S

0

and S

00


an be thought of as the initial and �nal surfa
es of

a foliation ofM into hypersurfa
es S

t

(or S for short). This foliation indu
es a

foliation on B into surfa
es P

t

(or P for short), P

t

� B\S

t

, with P

0

and P

00

as

extrema.

One 
an 
hoose an adapted 
oordinate system on M,

fx

�

g � fx

0

; x

i

g � fx

a

; x

D

g � fx

0

; x

A

; x

D

g � ft; x

A

; rg; (1.1)

7



with the following 
onventions for indi
es:

�; �; et
. 2 f0; : : : ; Dg; (1.2a)

i; j; et
. 2 f1; : : : ; Dg; (1.2b)

a; b; et
. 2 f0; : : : ; D � 1g; (1.2
)

A;B; et
. 2 f1; : : : ; D � 1g; (1.2d)

this 
oordinate system is adapted to the foliation so that the S hypersurfa
es

are given by t = 
onst., the boundary B by r = 
onst., and the P surfa
es

by t; r = 
onst. It is always possible to 
hoose su
h a 
oordinate system lo
ally.

The manifold M is given a pseudo-Riemannian metri
 g

��

(signa-

ture (�;+; : : : ;+)), with 
onnexion r and s
alar 
urvature R

M

. This metri


stru
ture indu
es other metri
 stru
tures on the various surfa
es (Fig. 1.1):

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

p

p

6 6

-�

�

��

H

H

Hj

S

0

S

S

00

P

0

P

P

00

B

u

�

u

�

~u

�

~n

�

n

�

M

Figure 1.1: Example of a foliation for D = 1 (in this 
ase the P surfa
es degenerate

into pair of points); the di�erent normal ve
tors are shown.

� the S surfa
es are spa
elike with future-oriented, timelike unit normal ve
-

tor �eld u

�

; they have indu
ed metri
 h

��

� g

��

+ u

�

u

�

, linear 
onnex-

ion D, intrinsi
 
urvature R

S

, and extrinsi
 
urvature K

��

� �

1

2

L

u

h

��

�

�h

�

�

h

��

r

�

u

�

; two proje
tion operators are given: h

�

�

proje
ts a tensor

index onto S, while �u

�

u

�

proje
ts onto the normal;

� the hypersurfa
e B is timelike with outward-pointing, spa
elike unit nor-

mal ve
tor �eld n

�

; the indu
ed metri
 is 


��

� g

��

�n

�

n

�

, with 
onnex-

ion � and extrinsi
 
urvature �

��

� �


�

�




��

�

�

n

�

; 


�

�

proje
ts a ten-

sor index onto B, while normal proje
tion is done by n

�

n

�

; the hyperboli


angle between the normal ve
tor �elds u

�

and n

�

is �

def

= � ar
sinhu

�

n

�

;

� every surfa
e P is spa
elike with indu
ed metri
 �

��

(�

�

�

operates tan-

gential proje
tion), and has four unit normal ve
tor �elds:
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1. u

�

, as it is a submanifold of S;

2. n

�

, as it is a submanifold of B;

3. ~n

�

, an outward-pointing, spa
elike unit ve
tor �eld whi
h is normal

to P with respe
t to its embedding in S;

4. ~u

�

, a future-pointing, timelike unit ve
tor �eld whi
h is normal to P

with respe
t to its embedding in B.

The 
omponents of the metri
 obje
ts above have simple expressions in the

adapted 
oordinate system (the usual Arnowitt-Deser-Misner [3℄ de
omposi-

tion):

(g

��

) �

�

�N

2

+N

k

N

k

N

j

N

i

h

ij

�

(1.3a)

�

�




ab

V

b

V

a

V

2

+ V




V




�

; (1.3b)

(g

��

) �

0

B

B

�

�

1

N

2

N

j

N

2

N

i

N

2

h

ij

�

N

i

N

j

N

2

1

C

C

A

(1.3
)

�

0

B

B

�




ab

+

V

a

V

b

V

2

�

V

b

V

2

�

V

a

V

2

1

V

2

1

C

C

A

; (1.3d)

where

h

ik

h

kj

� Æ

i

j

; (1.4a)




a






b

� Æ

a

b

; (1.4b)

N

i

def

= N

k

h

ki

; (1.4
)

V

a

def

= V








a

; (1.4d)

(so that h

ij

and 


ab

are the inverse metri
s in S and B respe
tively). N and

N

i

are the lapse and shift (with N

0

� N

t

= 0 and V

D

� V

r

= 0 by de�nition).

Moreover one has:

(u

�

) �

�

1

N

;�

N

i

N

�

; (1.5a)

(n

�

) �

�

�

V

a

V

;

1

V

�

; (1.5b)

(u

�

) � (�N;

~

0); (1.5
)

(n

�

) � (

~

0; V ): (1.5d)
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Sin
e the boundary B is foliated as well, its metri
 
an be de
omposed as

(


ab

) �

�

�

~

N

2

+

~

N

C

~

N

C

~

N

B

~

N

A

�

AB

�

; (1.6)

where

~

N and

~

N

A

are the boundary lapse and shift, with

~

N

0

�

~

N

t

=

~

N

D

�

~

N

r

def

= 0.

When the S hypersurfa
es are orthogonal to B (i.e. when � = 0), one has:

~u

�

= u

�

; (1.7a)

~n

�

= n

�

; (1.7b)

N =

~

N; (1.7
)

N

A

j

P

=

~

N

A

; (1.7d)

N

r

j

P

= 0: (1.7e)

Finally, one 
an 
onsider the asymptoti
 limit r ! 1 where the S hyper-

surfa
es assume a spatially in�nite extension, B and P being pushed to in�nity.

1.2 Lagrangian and Hamiltonian formulations

of gravity theory

1.2.1 Gravitational Lagrangian

Hilbert was the �rst to write down a Lagrangian for Einstein's General The-

ory of Relativity:

L

HE

def

=

Z

M

p

�gR

M

; (1.8)

thereby dedu
ing the equations of motion for the gravitational �eld just before

Einstein himself.

Sin
e then, Einstein's theory has be
ome like the trunk of a tree when
e

numerous theories bran
h o� | some thi
ker, some thinner |, whi
h in turn

have other bran
hes, and 
owers sometimes. This manifold development of

General Relativity is re
e
ted in the many a
tions/Lagrangians of the bran
h

theories, whi
h may even be very di�erent from one another, yet ea
h always


ontains (1.8) as a parti
ular 
ase.

Among them, there are theories where the gravitational �eld is 
oupled to a

s
alar �eld, the dilaton, in a non-minimal way (the dilaton is multiplied by the


urvature); su
h theories 
an often be, or a
tually are, derived from e�e
tive

string theories, and represent their a
tion at low energies.
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In the present work, a Lagrangian of the latter kind will be 
onsidered:

L

def

= �

Z

M

p

�g �(R

M

+�) + 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

�
 ��+ 2�

Z

P

00

P

0

p

� �� + L

�

+ L

mat

;

(1.9)

where � is the dilaton �eld, � is a model- and dimension-dependent 
onstant,

� is twi
e the 
osmologi
al 
onstant, L

�

def

=

R

B

p

�gL

�

[


ab

; �℄ is a boundary term

whi
h is a fun
tional of the B-indu
ed metri
 (more pre
isely: geometry) and

dilaton �elds (so that it does not 
ontribute to the equations of motion, but does


ontribute to the 
harges de�nition), L

mat

is the matter Lagrangian (minimally


oupled to the gravitational �eld), and the other symbols have already been

introdu
ed. This Lagrangian is a parti
ular 
ase of the Brans-Di
ke Lagrangian,

L

BD

def

= �

Z

M

p

�g �

�

R

M

+

!

�

2

(r�)

2

+�

�

+ 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

�
 ��+ 2�

Z

P

00

P

0

p

� ��+ L

�

+ L

mat

;

(1.10)

and 
ontains Hilbert-Einstein Lagrangian in turn. In what follows, we shall

seldom be 
on
erned with the matter term, but this will have no 
onsequen
es

upon the validity of the main reasoning lines and of �nal results.

The boundary terms make the Lagrangian (1.9) suited for a variational prin-


iple with �xation of the �elds on the boundary; indeed the variation is:

ÆL =

Z

M

(�

��

Æg

��

+�

�

Æ�) +

Z

S

00

S

0

(P

��

Æh

��

+ P

�

Æ�)

+

Z

B

(�

��

Æ


��

+�

�

Æ�) +

Z

P

00

P

0

(�

��

Æ�

��

+ �

�

Æ�)

+

Z

B

(�

�

ab

Æ


ab

+�

�

�

Æ�) +

Z

M

1

2

p

�g T

��

Æg

ab

+ [terms 
oming from the variation of the matter �elds℄;

(1.11)

where the symbols have the following de�nitions:

�

��

def

= ��

p

�g [�G

��

�

1

2

��g

��

+ g

��

(r�)

2

�r

�

r

�

�℄

=

p

�g �

��

;

(1.12a)

�

�

def

= ��

p

�g (R

M

+�) =

p

�g �

�

; (1.12b)

P

��

def

= ��

p

h [�(K

��

�Kh

��

) + h

��

u

�

�

�

�℄ =

p

hP

��

; (1.12
)

P

�

def

= 2�

p

hK =

p

hP

�

; (1.12d)

�

��

def

= ��

p

�
 [�(�

��

��


��

) + 


��

n

�

�

�

�℄ =

p

�
 �

��

; (1.12e)
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�

�

def

= �2�

p

�
� =

p

�
 �

�

; (1.12f)

�

��

def

= �

p

� ���

��

=

p

� �

��

; (1.12g)

�

�

def

= 2�

p

� � =

p

� �

�

; (1.12h)

�

�

ab

def

=

ÆL

�

Æ


ab

=

p

�
 �

�

��

; (1.12i)

�

�

�

def

=

ÆL

�

Æ�

=

p

�
 �

�

�

; (1.12j)

T

��

def

=

2

p

�g

ÆL

mat

Æg

��

: (1.12k)

Sin
e we assumed that the metri
 and dilaton indu
ed on the boundary were

�xed, their variations on the boundary vanish and so do all terms but the �rst

and the last in (1.11); in order for the �rst and last terms to vanish as well, we

must set to zero the 
oeÆ
ients of Æg

��

and Æ�; thus we have the equations of

motion:

�

��

= �

1

2

T

��

; (1.13a)

�

�

= 0: (1.13b)

1.2.2 Gravitational Hamiltonian

A Hamiltonian formulation of gravity theory is appealing in view of its sub-

sequent possible quantization, | and so in view of a quantum theory of gravity.

Su
h a formulation is more or less well established today, and represents a way to

a better understanding of gravity theory's prin
iples; a 
onsistent (divergen
e-

less) quantization is not at hand yet, though.

The most important steps toward the 
onstru
tion of the gravitational

Hamiltonian have been taken by Dira
 [27℄, Arnowitt, Deser, Misner [3℄,

DeWitt [26℄, and Teitelboim [39, 45℄, to say nothing of many others.

In the Hamiltonian formalism, the distin
tion is 
ru
ial between the 
oor-

dinates that des
ribe the system in phase spa
e, and the time 
oordinate that

tra
es the system evolution; the distin
tion between spa
e and time for short.

In the 
lassi
al formulation of gravity theory, this distin
tion is almost 
om-

pletely suppressed instead | of 
ourse, sin
e this is one of the theory's prin-


iples. Hen
e, in 
onstru
ting a gravitational Hamiltonian, one must `retra
e

one's steps' with respe
t to this prin
iple, and restore the distin
tion between

time and spa
e.

The distin
tion is a

omplished by foliating the spa
etime manifold M,

where the metri
 �eld g

��

lives, into spa
elike hypersurfa
es S (q.v. Se
. 1.1);

this way the system's phase spa
e is spanned by the spa
elike metri
 
ompo-

nents h

ij

and the dilaton � whi
h live on the leaves, and by their 
onjugate

momenta P

ij

and P

�

: these are the new dynami
al variables. Thus the num-

ber of degrees of freedom de
reases from

1

2

(D

2

+3D+4) to

1

2

(D

2

+D+2).
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The system traje
tory may be visualized as an evolution of the hypersurfa
es

| whi
h 
arry the metri
 and dilaton �elds | in a temporal dire
tion, and

the evolution take pla
e between two �xed hypersurfa
es (S

t

0

; h

0

ij

; �

0

;P

ij

0

;P

�

0

)

and (S

t

00

; h

00

ij

; �

00

;P

ij

00

;P

�

00

), in analogy with a 
lassi
al system's path between

two �xed points. The (
lassi
al) traje
tory of the gravitational system must

extremise the a
tion, and this leads to the Hamiltonian equations of motion for

the metri
 
omponents, the dilaton and their momenta.

Mathemati
ally, all this 
orresponds to a division of Einstein's equations

into two groups: D+1 equations impose 
ompatibility 
onstraints on the initial

data (h

0

ij

; �

0

;P

ij

0

;P

�

0

), while the remaining D

2

equations yield the e�e
tive

dynami
al evolution.

The Lagrangian L, whi
h has a 
ovariant, 
oordinate-independent form, 
an

be re-expressed in a 
anoni
al form, in terms of the obje
ts whi
h emerge from

the spa
etime foliation (q.v. e.g. Kijowski [31℄), by means of the Gauss-Codazzi

relation

R

M

= R

S

�K

2

+K

ij

K

ij

� 2r

�

(u

�

K + u

�

r

�

u

�

); (1.14)

and it be
omes

L = S

def

=

Z

t

00

t

0

�

Z

S

(P

��

_

h

��

+ P

�

_� �NH �N

i

H

i

)

�

Z

P

(

~

NE �

~

N

A

J

A

)

�

;

(1.15)

where

H

def

= 2

p

h u

�

u

�

�

��

= �2P

ij

K

ij

+ P

�

u

�

�

�

� �

p

h [�(R

S

+K

ij

K

ij

�K

2

)

+ 2Ku

�

�

�

� � �(u

�

�

�

�)

2

+ �(D�)

2

� 2D

2

� + ��℄

(1.16a)

is the Hamiltonian energy 
onstraint, while

H

i

def

= �2

p

hh

i�

u

�

�

��

= �2D

k

P

k

i

+ P

�

D

i

� (1.16b)

is the Hamiltonian momentum 
onstraint; and

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.17a)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� �

Ai

n

j

P

ij

� J

�

A

; (1.17b)

with

E

�

= 2

p

� ~u

a

~u

b

�

�

ab

; (1.17
)

J

�

A

= 2

p

� �

Aa

~u

b

�

�

ab

; (1.17d)
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are the energy and momentum boundary terms.

We shall some important remarks upon the boundary integral in Eq. (1.15)

later; now we just want to note that the Hamiltonian energy and momentum


onstraints H and H

i

depend upon the phase-spa
e variables (h

ij

; �;P

ij

;P

�

)

and the lapse and shift; the quantities E and J

i

, instead, do depend solely

upon the 
anoni
al variables only if E

�

and J

�

i

do (we shall see later that these

quantities are the system energy and momentum).

By means of a Legendre transformation

Z

t

00

t

0

H =

Z

t

00

t

0

Z

S

(P

��

_

h

��

+ P

�

_�)� L (1.18)

one �nally obtains the gravitational Hamiltonian

H

def

=

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

A

J

A

); (1.19)

and the 
anoni
al equations of motion are

_

h

ij

=

ÆH

ÆP

ij

; (1.20a)

_� =

ÆH

ÆP

�

; (1.20b)

_

P

ij

= �

ÆH

Æh

ij

; (1.20
)

_

P

�

= �

ÆH

Æ�

: (1.20d)

This kind of Hamiltonian approa
h, whi
h adopts fh

ij

; �;P

ij

;P

�

; N;N

i

g as


anoni
al variables, is mainly due to Arnowitt, Deser and Misner [3℄. There are

also other approa
hes, whi
h use a di�erent set of variables and present other

advantages, like e.g. Ashtekar's approa
h [4℄ that uses a spinor stru
ture on the

spa
elike leaves. In the present work only Arnowitt, Deser and Misner's method

will be 
onsidered.

1.2.3 The lapse and shift

The so 
alled `lapse' N and `shift' N

i

in Eqs. (1.15) and (1.19) play the role

of Lagrange multipliers; indeed, the vanishing of the 
oeÆ
ients of their varia-

tions leads to the equations H = 0 and H

i

= 0, whi
h are just the 
onstraint

equations for the initial data. A very important feature of the gravitational

Hamiltonian is that the lapse and shift are not determined by the equations of

motion, but rather they are to be spe
i�ed ab initio in order to integrate the

equations (a similar situation arises, with the s
alar potential, in the Hamilto-

nian for the ele
tromagneti
 �eld; q.v. Misner, Thorne e Wheeler [37, x21.8℄).

This 
hara
teristi
 appears as a residual of the Lagrangian full gauge symmetry,

and is related to the fa
t that there is not only one possible foliation of (M; g

��

)
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between the hypersurfa
es (S

t

0

; h

0

ij

) and (S

t

00

; h

00

ij

), but rather an in�nite family

of foliations; only after one of them is given, 
an the 
anoni
al variables' evolu-

tion be studied. When one spe
i�es the lapse and shift, one is in fa
t spe
ifying

a foliation; more pre
isely, one is spe
ifying the unique future-pointing, timelike

unit ve
tor �eld u

�

whi
h is normal to every leaf of that foliation. The ve
tor


omponents are given by:

u

0

=

1

N

; (1.21a)

u

i

= �

N

i

N

: (1.21b)

The lapse N(t; x

i

) determines the lapse of proper time, whi
h amounts

to N(t; x

i

) Æt, from the point (x

i

) on the hypersurfa
e S

t

to the point (x

i

+ Æx

i

)

on S

t+Æt

; the shift N

i

(t; x

i

) determines the tangential shift of the same point,

whi
h amounts to Æx

i

� N

i

(t; x

i

) Æt.

A quite interesting feature of this fun
tion and ve
tor �eld is that they 
an

be used to study how the system evolves along a series of hypersurfa
es given

the a
tion of a one-parameter transformation group T

t

: the hypersurfa
e S

t+Æt

is given by S

t+Æt

= T

Æt

S

t

= L

(Æt �)

S

t

, where � is the group generator. The lapse

and shift 
orresponding to the foliation thus generated 
an be expressed as:

N

def

= ��

�

u

�

=

1

p

�g

00

�

0

; (1.22a)

N

i

def

= �

�

h

i

�

= �

i

�

g

0i

g

00

�

0

: (1.22b)

1.2.4 The boundary integral

The above-given expression of the boundary integral in Eq. (1.15),

Z

P

(

~

NE �

~

N

A

J

A

); (1.23a)

with

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.23b)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� 


Ai

n

j

P

ij

� J

�

A

; (1.23
)

E

�

= 2

p

� ~u

a

~u

b

�

�

ab

; (1.23d)

J

�

A

= 2

p

� �

Aa

~u

b

�

�

ab

; (1.23e)

is only valid when the following equation holds:

~

N ~u

�

+

~

N

�

= Nu

�

+N

�

(1.24)

(q.v. e.g. Booth and Mann [11℄). The meaning of 
ondition (1.24) be
omes

immediately 
lear upon noti
ing that the ve
tor �eld Nu

�

+N

�

generates the
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evolution of the hypersurfa
es S, and the ve
tor �eld

~

N ~u

�

+

~

N

�

is always tangent

to B: Eq. (1.24) is equivalent to requiring that the initial surfa
eP

0

= �S

0

should

evolve tangentially to the boundary B, i.e. neither `
rashing into' nor `
oming

out of' B (this is a legitimate request when B is the a
tual boundary of the

spa
etime, but it is not when B is just a temporary, `�
titious' boundary to be

eventually pushed to in�nity).

In addition, if the hypersurfa
es S are always orthogonal to B, one also has,

in the adapted 
oordinate system:

~u

�

= u

�

; (1.25a)

~

N = N; (1.25b)

~

N

A

= N

A

; (1.25
)

N

r

= 0; (1.25d)

so that the boundary integral (1.23) 
an be written as:

Z

P

(NE �N

A

J

A

) (1.26a)

with

E = 2

p

� u

a

u

b

�

ab

= 2

p

� (�n

�

r

�

� + �k)�E

�

; (1.26b)

J

A

= 2

p

� �

Aa

u

b

�

ab

= 2

p

� h

Ai

n

j

P

ij

� J

�

A

; (1.26
)

E

�

= 2

p

� u

a

u

b

�

�

ab

; (1.26d)

J

�

A

= 2

p

� �

Aa

u

b

�

�

ab

: (1.26e)

(q.v. e.g. Brown and York [17℄, Creighton and Mann [24℄).

If one gives up 
ondition (1.24), then the expression of the boundary integral,

for a non-dilatoni
 theory, be
omes (q.v. Hawking and Hunter [30℄):

Z

P

(NE �N

i

J

i

) (1.27a)

with

E

def

=

p

�

�

2k � 2

�


osh�

r

�

~u

�

�

�E

�

; (1.27b)

J

i

def

= 2

p

� ~n

j

P

ji

� J

�

i

: (1.27
)

Who writes has not found in the literature, nor has 
al
ulated personally, the

generalisation of Eqs. (1.27) for a dilatoni
 theory.

1

1

Note added in translation: We eventually 
al
ulated su
h a generalisation, q.v. Hamilto-

nians for a general dilaton gravity theory on a spa
etime with a non-orthogonal, timelike or

spa
elike outer boundary, to appear in Class. Quantum Gravity.
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1.3 Anti-de Sitter spa
e and bla
k holes

1.3.1 Anti-de Sitter spa
e

De�nition

The (D+1)-dimensional anti-de Sitter spa
e is a pseudo-Riemannian manifold

with negative 
onstant 
urvature ��

2

, and 
an be easily 
onstru
ted starting

from the hyperboloid

(y

0

)

2

+ (y

D+1

)

2

�

D

X

i=1

(y

i

)

2

= �

�1

(1.28)

in 
at spa
e (R

D+2

; �̂), where �̂ is the metri


�̂

def

= �(dy

0

)

2

� (dy

D+1

)

2

+

D

X

i=1

(dy

i

)

2

: (1.29)

By 
onstru
tion, the hyperboloid shares the same group of isometries of the

embedding spa
e (ex
ept for translations), SO(2; D).

The hyperboloid (1.28) 
an be des
ribed parametri
ally by

y

0

= �

�1


osh � 
os � (1.30a)

y

i

= �

�1

sinh � 


i

(i = 1; : : : ; D) (1.30b)

y

D+1

= �

�1


osh � sin � (1.30
)

with

� � 0; (1.31a)

0 � � < 2�; (1.31b)




i


oordinates on S

D

; (1.31
)

so that the intrinsi
 metri
 is

ds

2

= �

�2

(� 
osh

2

� d�

2

+ d�

2

+ sinh

2

� d


2

); (1.32)

where d


2

is the metri
 on S

D

.

The hyperboloid's topology is S

1

� R

D

, so that timelike 
urves are present;

in order to have a 
ausal spa
etime, one passes to the universal 
overing, whi
h

has topology R

1

� R

D

and the same metri
 (1.32) but with new 
oordinate

intervals:

� � 0; (1.33a)

�1 < � < +1; (1.33b)




i


oordinates on S

D

: (1.33
)
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By de�nition, (D + 1)-dimensional anti-de Sitter spa
e is this 
overing.

One 
an always �nd a 
oordinate 
hart (t;


i

; r) su
h that the metri
 takes

the following form:

ds

2

= �(�

2

r

2

+ 1) dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d


2

; (1.34)

su
h 
hart does not 
over the whole manifold, but it will be very useful in the

asymptoti
 analysis of bla
k-hole solutions.

Causal properties

The 
ausal stru
ture of anti-de Sitter spa
e presents interesting features. By

means of the 
oordinate 
hange

� = ar
tan(sinh �)

�

0 � � <

�

2

�

; (1.35)

the metri
 (1.32) be
omes

ds

2

=

1

�

2


os

2

�

(�d�

2

+ d�

2

+ sinh

2

� d


2

); (1.36)

thus we see that anti-de Sitter spa
e is 
onformal to the interior of the 
ylin-

der R�S

D�1

, and its boundary (the 
ylinder) is timelike (Fig. 1.2) | as opposed

e.g. to the boundary of (
onformally 
ompa
ti�ed) Minkowski spa
e, whi
h is

null.

This boundary 
hara
terizes all asymptoti
ally anti-de Sitter solutions of the

theory, e.g. bla
k-hole solutions, and possesses two important (
ausal) features:

�rst, it is 
onformal to D-dimensional 
ompa
ti�ed Minkowski spa
e (short of

the addition of two 
ompa
tifying points at in�nity � = �1 and � = +1);

se
ond, an observer 
an see a light signal going to in�nity and 
oming ba
k in

a �nite lapse of his proper time.

The �rst feature allows a D-dimensional 
onformal �eld theory to live on the

boundary; the se
ond feature holds some important 
onsequen
es for bla
k-hole

solutions, for it allows one to have a thermal bath by a �nite amount of energy,

and hen
e stable solutions (in thermal equilibrium).

1.3.2 Bla
k holes in anti-de Sitter spa
e

Fundamental properties

Einstein's equation in four dimensions admits the well-known S
hwarzs
hild's

bla
k-hole metri
 as a solution:

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

d


2

; (1.37)

whereM is the mass of the bla
k hole. The 
hara
teristi
s of this solution whi
h

are of interest to us are the following:
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Figure 1.2: A se
tion of the Penrose diagram for anti-de Sitter spa
e.
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1. the presen
e of an asymptoti
ally 
at region

2

, i.e. of a boundary like that

of Minkowski spa
e;

2. spheri
al symmetry and stationarity

3

, i.e. the invarian
e under the

group SO(3) (or SO(D) in (D + 1) dimensions) and the existen
e of a

timelike Killing ve
tor �eld;

3. the presen
e of a spa
elike polynomial singularity, i.e. a spa
elike hypersur-

fa
e where the 
urvature diverges, whi
h makes the manifold geodeti
ally

in
omplete;

4. the presen
e of an event horizon, i.e. a null hypersurfa
e from whose inte-

rior no physi
al signal is (
lassi
ally) allowed to es
ape

4

.

Considering a more general gravity theory with a 
osmologi
al 
onstant and

a dilaton, we should like to �nd a solution with similar 
hara
teristi
s, but

that e.g. should have an asymptoti
 region with non-zero 
onstant 
urvature

| i.e. that should be asymptoti
ally anti-de Sitter. Besides, we should like to

study it in two or three dimensions, thus making the 
omputational ma
hinery

easier (q.v. Lemos [34℄).

The three-dimensional 
ase

Dilatoni
 theory In three dimensions, a dilatoni
 theory with Lagrangian

1

2�

Z

M

d

3

x

p

�g �(R

M

+ 6�

2

) (1.38)

(where boundary terms have been omitted) possesses a 
lass of solutions similar

to (1.37) (q.v. Cadoni [18℄):

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (1.39a)

� = �r; (1.39b)

it des
ribes a spa
etime whi
h is asymptoti
ally anti-de Sitter (in the sense that

its 
urvature is asymptoti
ally 
onstant and negative), spheri
ally symmetri
,

stationary, and with a polynomial singularity and an event horizon: hen
e we


an interpret it as a bla
k-hole solution in anti-de Sitter spa
e; the bla
k-hole

mass is M = 2��

2

, and the ground state is

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

+ r

2

d�

2

; (1.40a)

� = �r: (1.40b)

2

We shall not 
onsider the maximal analyti
al extension of the solution (1.37), given by

the Kruskal-Szekeres metri
, whi
h has two distin
t asymptoti
 regions; only one asymptoti


region is of interest to us.

3

In the absen
e of matter the se
ond property follows from the �rst by Birkho�'s theorem.

4

We shall not adopt the de�nition of an event horizon as a separation hypersurfa
e between

two distin
t asymptoti
 regions; see Note 2.
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Non-dilatoni
 theory However, we fa
e some diÆ
ulties as soon as we 
on-

sider a non-dilatoni
 theory. In three dimensions, indeed, an asymptoti
ally

anti-de Sitter bla
k-hole solution similar to (1.37) exists for the non-dilatoni


a
tion in four dimensions

1

16�

Z

M

d

4

x

p

�g (R

M

+ 6�

2

); (1.41)

namely

ds

2

= �

�

�

2

r

2

+ 1�

2M

r

�

dt

2

+

�

�

2

r

2

+ 1�

2M

r

�

�1

dr

2

+ r

2

d


2

;

(1.42)

but su
h a solution exists only in a number of dimensions greater than three.

Ba~nados, Teitelboim, and Zanelli [8℄ were the �rst to 
onstru
t a three-

dimensional asymptoti
ally anti-de Sitter bla
k-hole solution, by simply altering

the global topology of anti-de Sitter spa
e (q.v. also Ba~nados, Henneaux, Teitel-

boim, Zanelli [7℄, Ba~nados, Gombero�, Mart��nez [6℄). The alteration is realized

by taking the quotient spa
e of the a
tion of a parti
ular transformation group

whi
h a
ts over anti-de Sitter spa
e, i.e. by identifying some points; to be more

pre
ise, in the 
oordinate system where the metri
 is given by:

ds

2

= �(�

2

r

2

+ 1)dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (1.43)

the points (t; r; �) and (t � 2�A; r; � + 2��) are identi�ed. This amounts to

removing an angular sli
e equal to 2�(1 � �) and inserting a time jump equal

to 2�A.

The spa
e thus obtained is lo
ally exa
tly alike to the original one: it

has negative 
onstant (not only asymptoti
ally 
onstant) 
urvature, isometry

group R � SO(2), and it is a solution for the equations of motion 
oming from

the following Lagrangian:

1

2�

Z

M

d

3

x

p

�g (R

M

+ 2�

2

): (1.44)

The point identi�
ation gives rise to a region whi
h hosts 
losed timelike


urves, so that one has to 
ut this region away, thus rendering the spa
etime

geodeti
ally in
omplete, and the (spa
elike) 
ut-surfa
e 
an be viewed as a sin-

gularity; it is just a `
ausal' singularity, and not a polynomial one, be
ause the


urvature tensors do not diverge near it. When jAj < �� the singularity is

hidden by a null hypersurfa
e from whose interior no signal may es
ape, so that

it 
an be viewed as an event horizon.

Summing up, we have a solution with the following 
hara
teristi
s:

1. it is asymptoti
ally anti-de Sitter, sin
e it is lo
ally anti-de Sitter

5

;

5

Moreover, its maximal analyti
al extension has only one asymptoti
 region, as opposed

to the S
hwarzs
hild solution's extension, whi
h has two (q.v. Note 2).

21



2. it is 
ir
ularly symmetri
 (i.e. SO(2)-invariant) and stationary;

3. it has a spa
elike 
ausal singularity;

4. it has an event horizon.

It 
an naturally be 
onsidered a bla
k-hole solution; it is 
alled a `topologi
al

bla
k hole', for the way it is obtained. The parameter M = � is the bla
k-hole

mass and J = �A is the bla
k-hole angular momentum.

In order to have a 
oordinate system without jumps, one makes the following


oordinate transformation:

t 7�! �t� A� (1.45a)

r 7�! r(�

2

�A

2

�

2

)

�

1

2

(1.45b)

� 7�! ���A�

2

t (1.45
)

and the new expression for the metri
 (1.43) is:

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

�A

2

�

2

)

�1

dr

2

+ 2�Adt d� + (r

2

�A

2

)d�

2

:

(1.46)

In this 
oordinate system, the isometries are generated by the Killing ve
tor

�elds �=�t and �=��.

Both the dilatoni
 and the non-dilatoni
 bla
k-hole solutions, Eqs. (1.39)

and (1.46) respe
tively, share the same Penrose diagram for the ground

state (M = 0) and for a bla
k hole with positive mass (M > 0) (Figs. 1.3

and 1.4).

The bidimensional 
ase

A gravity theory in two dimensions must ne
essarily be a dilaton one, be-


ause the 
urvature is a topologi
al invariant in two dimensions: an a
tion like

the Hilbert-Einstein a
tion (with or without a 
osmologi
al 
onstant) would

not have any dynami
s without the introdu
tion of one more degree of freedom,

represented by the dilaton �eld (indeed, General Relativity in two dimensions

has �1 e�e
tive degrees of freedom).

Hen
e one adopts Ja
kiw and Teitelboim's Lagrangian,

1

2

Z

M

d

2

x

p

�g (R

M

+ 2�

2

); (1.47)

whose equations of motion possess bla
k-hole solutions of a `topologi
al' kind;

they have the form:

6

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

)

�1

dr

2

; (1.48a)

� = �

0

�r: (1.48b)

6

The arbitrary 
onstant �

0

shall be often set to unity in the following se
tions.
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Figure 1.3: A se
tion of the Penrose diagram for the ground state (M = 0) solution

in three-dimensional anti-de Sitter spa
e.
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Figure 1.4: A se
tion of the Penrose diagram for the positive-mass bla
k-hole solu-

tion (M > 0) in three-dimensional anti-de Sitter spa
e.
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The metri
s (1.48a), 
ontrary to what one 
ould expe
t be
ause of the pres-

en
e of the parameter �, are just di�erent parameterizations of two-dimensional

anti-de Sitter spa
e, 
overing di�erent regions; it is just the presen
e of the

dilaton whi
h makes them geometri
ally and physi
ally di�erent. The dilaton

must be positive, sin
e it plays the role of a 
oupling 
onstant; this implies that

we must 
ut the hypersurfa
e where the dilaton vanishes and remove the region

where it is negative, thus the manifold be
omes geodeti
ally in
omplete and

a 
ausal singularity appears. The 
ut-surfa
e 
an be of di�erent 
ausal kinds,

depending on the parameter �: it is timelike when �

2

< 0, null when �

2

= 0,

and spa
elike when �

2

> 0; in the latter 
ase an event horizon is also present.

Thus, we have three families of solutions with di�erent global topologies, whi
h

we 
all AdS

�

2

(�

2

< 0), AdS

0

2

(�

2

= 0), and AdS

+

2

(�

2

> 0). The solution

with �

2

= 0 
an be 
onsidered as the ground state, and that with �

2

> 0 as

a bla
k-hole solution with positive mass M =

1

2

�

0

��

2

: its 
hara
teristi
s are

similar to Ba~nados, Teitelboim and Zanelli's solution:

1. it is asymptoti
ally and lo
ally AdS

0

2

;

2. it is stationary

7

;

3. it has a spa
elike 
ausal singularity;

4. it has an event horizon.

One should note that we have not said `asymptoti
ally anti-de Sitter', sin
e

full anti-de Sitter spa
e is not 
onsidered among the solutions, and its role

as a ground state is played by AdS

0

2

. Moreover, one should also note that

the two-dimensional topologi
al bla
k-hole has two distin
t asymptoti
 regions,

as opposed to the three-dimensional bla
k-hole, whi
h has one (q.v. pre
eding

notes); this is simply due to the fa
t that the sphere S

1

is not 
onne
ted, while S

2

is. Apart from that, the Penrose diagrams for the ground state and the bla
k-

hole solutions are similar to those for the three-dimensional solutions (Figs. 1.5

and 1.6).

Dimensional redu
tions

Under 
ertain symmetry 
onditions, it is possible to redu
e the Lagrangian

of a gravitational model to the Lagrangian of another gravitational model living

in a less number of dimensions; one immediately understands that this 
an be

very useful for studying high-dimensional models, sin
e solutions for the lower-

dimensional Lagrangian shall also be solutions for the higher-dimensional one.

The bidimensional Ja
kiw-Teitelboim Lagrangian and bla
k-hole solutions

are just an example of this dimensional redu
tion: they 
an indeed be obtained

from a four-dimensional Lagrangian with dilaton and ele
tromagneti
 �elds (re-

lated to a Brans-Di
ke Lagrangian, q.v. Cadoni and Mignemi [21℄), or from a

7

One might also say that it is spheri
ally symmetri
, but that would be a triviality,

sin
e SO(1) 
ontains only the identity element.
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Figure 1.5: Penrose diagram for the ground state (M = 0) solution in bidimensional

anti-de Sitter spa
e.
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Figure 1.6: Penrose diagram for the bla
k-hole solution with positive mass (M > 0)

in bidimensional anti-de Sitter spa
e.
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three-dimensional Lagrangian whose solutions are just the Ban~ados-Teitelboim-

Zanelli bla
k holes (q.v. A
h�u
arro and Ortiz [1℄).

So, suppose that a three-dimensional metri
, obtained from a variational

prin
iple with Lagrangian

L =

Z

M

d

3

x

p

�g (R

M

+�); (1.49)

has 
omponents whi
h do not depend on a 
oordinate �:

ds

2

= g

��

dx

�

dx

�

= f

��

(x

�

) dx

�

dx

�

+�

2

(x

�

) d�

2

; (1.50)

then, it is easy to verify that the Lagrangian (1.49) 
an be redu
ed to the

bidimensional Ja
kiw-Teitelboim one:

L =

Z

M

d

2

x

p

�f �(R

M

+�): (1.51)

As a 
onsequen
e, every three-dimensional solution (1.50) 
orresponds to a bidi-

mensional solution

ds

2

= f

��

(x

�

) dx

�

dx

�

; (1.52a)

� = �(x

�

): (1.52b)

Just this 
orresponden
e holds between solutions (1.46) and (1.48a) (when A =

0); from this point of view, the dilaton is nothing but the 
omponent g

��

of

the three-dimensional metri
, whi
h is singular (
oordinate singularity) where

that 
omponent vanishes. This 
an be seen as another reason for removing the

regions wherein the dilaton is not positive.

Thermodynami
s and entropy

As a very short sket
h of bla
k-hole thermodynami
s, 
onsider a bla
k hole

des
ribed by the following parameters: mass M , angular momentum J , ele
tri



harge Q; then, the following relation holds among their variations:

ÆM =

k

2�

Æ

�

A

4

�

+
 ÆJ +� ÆQ; (1.53)

where A is the area of the event horizon, k is the surfa
e gravity, 
 is the

angular velo
ity, and � is the ele
tri
 potential; moreover, one also has, for a

stati
 solution, that

k

2�

= 
onstant, throughout the event horizon; (1.54)

and that (Hawking's theorem)

Æ

�

A

4

�

� 0: (1.55)
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The similarity between these three relations and the three thermodynami
s

laws is evident: a system in an equilibrium state has a 
onstant quantity, namely

the temperature T ; its entropy S 
an only in
rease; for a system transformation

the relation

ÆE = T ÆS +


i

ÆW

i

; (1.56)

holds, where 


i

ÆW

i

are work terms.

The identi�
ation between the quantities

M = E; (1.57a)

T =

k

2�

; (1.57b)

S =

A

4

; (1.57
)

whi
h is only a formal one at a 
lassi
al level, was shown to be a physi
al one

as well at a semi
lassi
al level, thanks to Hawking's investigations on bla
k-hole

evaporation.

Classi
al system's temperature and entropy 
an be given a statisti
al mean-

ing in terms of mi
rostates, and one would like to give a similar statisti
al

meaning to bla
k hole's as well; it appears that this will be a
hieved when a

quantum theory of gravity will be at hand. Anti-de Sitter spa
e proves to be

very interesting in this 
ontext: we shall see that three-dimensional gravity

on anti-de Sitter spa
e and its bla
k-hole solutions 
an be asso
iated with a

two-dimensional 
onformal dual theory whereupon statisti
al analysis 
an be

done. A very important result is that the statisti
al entropy, 
al
ulated through

the dual theory, exa
tly equals the thermodynami
 one, whi
h 
omes from the

gravity theory.
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Chapter 2

Asymptoti
 symmetries in

the Hamiltonian and

quasilo
al formalisms

2.1 Asymptoti
 
onditions and asymptoti
 sym-

metries

When a (gravitational) system's surfa
e at in�nity enjoys some symmetries,

we speak about asymptoti
 symmetries. To have a 
learer idea of this, we ought

to state what we mean by `surfa
e at in�nity' of a gravitational system and by

`symmetries of a surfa
e at in�nity'.

2.1.1 Surfa
e at in�nity and asymptoti
 
onditions

In physi
s, the distin
tion between the bulk and the surfa
e of a system is

often very important. In gravity theory, the system usually 
onsists of a di�er-

entiable manifold M and of all the geometro-physi
al obje
ts that are de�ned

therein; in this 
ase the distin
tion between `bulk' and `surfa
e' is very alike to

(if we do not want to say \
oin
ident with") the topologi
al distin
tion between

`interior' and `boundary', represented by the symbols `

o

M' and `�M'. Nonethe-

less we prefer to use the terms `bulk' and `surfa
e' rather than `interior' and

`boundary', be
ause we shall speak about a `surfa
e' even when the 
orrespond-

ing topologi
al 
on
ept `boundary' is ill- or non- or just intuitively-de�ned.

This 
omparison with mathemati
al terminology is a 
ue for 
larifying the


on
ept of `surfa
e at in�nity'.
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Compa
t manifold

Let M be a (D+1)-dimensional 
ompa
t manifold with boundary, with

metri
 g; the notion of surfa
e or boundary �M is (topologi
ally) well-de�ned

1

:

we 
an de�ne it as a (regular) embedding F of a D-dimensional manifold B

into M,

F : B �!M; F (B) = �M: (2.1)

lo
ally, it is always possible to 
hoose a 
oordinate system (x

0

; : : : ; x

D

) � (x

a

)

on B and (x

0

; : : : ; x

D

; r) � (x

a

; r) � (x

�

) on M su
h that the embedding in


oordinates reads:

F : (x

0

; : : : ; x

D

) 7�! (x

0

; : : : ; x

D

; R); R = 
onst. (2.2)

The embedding indu
es all various tangent maps, push-forwards and pull-ba
ks

between the various tangent bundles and tensor-�eld spa
es on B � �M

and M, e.g.

TF : TM! TB (2.3a)

between the ve
tor tangent bundles,

F

�

: X(B)! X(�M) (2.3b)

between the ve
tor-�eld spa
es, or

F

�

: �(M)! �(B) (2.3
)

between the form spa
es (q.v. e.g. Choquet-Bruhat, De Witt-Morette, and

Dillard-Blei
k [23℄ or Bishop and Goldberg [10℄ or Curtis and Miller [25℄ or

S
hutz [40℄ or Sternberg [41℄). Thus the metri
 


ab

and a s
alar �eld �j

B

in-

du
ed on B are de�ned as




ab

= F

�

(g

��

) = g

ab

j

r=R

; (2.4a)

�j

B

= F

�

(�) = �j

r=R

; (2.4b)

and every tangent ve
tor ~v on B 
an be seen as a tangent ve
tor v on M:

v

�

= TF (~v

a

) =

�

~v

a

0

�

: (2.5)

Non-
ompa
t manifold

Now let M be a non-
ompa
t, in�nitely extended manifold instead; �rst of

all, from a stri
t topologi
al point of view, the boundary �M does not exist

at all (it is the empty set), and we 
annot speak about embeddings onto �M.

Rather, we use limit and series expansion as `tools' here.

1

We suppose we are dealing with non-pathologi
al manifolds, of 
ourse.
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In this 
ase indeed, by `surfa
e' we mean an asymptoti
 region, whi
h 
an

be 
hara
terized e.g. by the 
oordinate r ! 1. More subtle is de�ning the

geometro-physi
al obje
ts `indu
ed' on this `surfa
e at in�nity'. At �rst sight,

for example, it would seem reasonable to de�ne the indu
ed obje
ts simply as

their limit for r !1, so that the indu
ed metri
 or s
alar �eld would be

1

g

��

def

= lim

r!1

g

��

; (2.6a)

1

�

def

= lim

r!1

�: (2.6b)

But su
h a de�nition would soon prove to be unuseful, for vanishing or in�nite

limits may appear: for example, for Minkowski spa
e we should have:

1

g

��

� diag(�1;+1; : : : ); (2.7)

but for anti-de Sitter we should have, among the various metri
 
omponents:

1

g

tt

�1;

1

g

rr

� 0: (2.8)

We have a better de�nition if we use an r-power series expansion around

in�nity:

1

g

��

def

=

(�)

g

��

+O

�

1

r

�

�

; (2.9a)

1

�

def

=

(�)

� +O

�

1

r

�

�

; (2.9b)

where � and � are exponents whi
h depend on the metri
 
omponent (��) and

on the s
alar �eld respe
tively, and

(�)

g

��

and

(�)

� are the metri
 
omponent g

��

and the s
alar �eld �, expanded in series till the (1=r

��1

)-th and the (1=r

��1

)-

th powers, respe
tively. By means of a power series expansion, we 
an tell what

is relevant to the `surfa
e at in�nity' from what is not, while avoiding problems

with in�nite or vanishing limits: the metri
's `pie
e'

(�)

g

��

is 
onsidered as the

e�e
tive `indu
ed metri
 at in�nity', and O(1=r

�

) represents a gauge part; this


an in turn be de
omposed into an improper gauge (lower order terms) and a

proper gauge (higher order terms, whi
h vanish faster). The distin
tion between

improper and proper gauge is made be
ause the gravitational system's e�e
tive

physi
al information resides both in the indu
ed metri
 at in�nity

(�)

g

��

and

in the improper gauge part (q.v. Benguria, Cordero, e Teitelboim [9℄).

Noti
e that there appears to be a 
ertain 
exibility in 
hoosing the e�e
tive

metri
, improper gauge, and proper gauge parts of the power series expansion;

we mean su
h a 
hoi
e when we speak about spe
ifying asymptoti
 
onditions.

The 
hoi
e is not arbitrary though, but relies rather on physi
al and mathemat-

i
al grounds. Consider e.g. the (rr) 
omponent of the anti-de Sitter metri
 in

two (1.48a) or three dimensions (1.46 with A = 0):

g

rr

= (�

2

r

2

+ �

2

)

�1

=

1

�

2

r

2

�

�

2

�

4

r

4

+

�

4

�

6

r

6

+ � � � ; (2.10)
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one �nds that the most 
onvenient 
hoi
e is taking 1=(�

2

r

2

) + 0=(r

3

) as the

e�e
tive part, ��

2

=(�

4

r

4

) as the improper gauge part, and O(1=r

5

) as the

proper gauge part: su
h a 
hoi
e is di
tated by the requirement of having the

largest group of asymptoti
 symmetries with non-diverging 
harges (q.v. follow-

ing se
tions); instead, taking e.g. 1=(�

2

r

2

) as the e�e
tive part and 0=(r

3

) �

�

2

=(�

4

r

4

) as the improper gauge part would yield diverging 
harges.

2

The 
exibility in 
hoosing the asymptoti
 
onditions 
an be viewed as a

strong point of this formalism, but we interpret it rather as a sign of ambiguity,

sin
e it often happens that one is able to make the right 
hoi
e only a posteriori.

2.1.2 Asymptoti
 symmetries

The di�eren
e between bulk- and surfa
e-symmetries

Given a system whatsoever, it is sometimes possible to deform its bulk and

leave its surfa
e unaltered, while, for 
ontinuity reasons, it is never possible to do

the inverse. Hen
e, if a 
ertain transformation is not a symmetry of the surfa
e

(i.e. the surfa
e is deformed by the transformation), it 
annot be a symmetry

of the bulk either. Therefore one infers that the number of surfa
e symmetries

is always equal to or greater than the number of bulk symmetries.

Symmetries at in�nity

On
e the notions of surfa
e at in�nity and metri
 indu
ed at in�nity have

been explained, the notion of symmetry at in�nity follows then
e more or less

plainly.

Consider the (left) a
tion of a (Lie) transformation group G upon a

(pseudo-)Riemannian manifold M; a transformation T belonging to the group

is generated by the ve
tor �eld �. The metri
 g

��

is invariant under the

transformation only if its Lie derivative with respe
t to the generator vanishes:

T(g

��

) = g

��

() L

�

g

��

= 0; (2.11)

when this happens the transformation T is an isometry. This is an example of

symmetry `at �nite'.

Now 
onsider a surfa
e at in�nity with indu
ed metri


1

g

��

=

(�)

g

��

+O

�

1

r

�

�

; (2.12)

with spe
i�ed asymptoti
 
onditions. What shall we mean by symmetry in this


ase? It is the part

(�)

g

��

that is 
onsidered as the e�e
tive indu
ed metri
, so

every transformation that leaves it invariant is to be 
alled a symmetry:

T is a symmetry() T(

1

g

��

) =

1

g

��

() T

�

(�)

g

��

�

=

(�)

g

��

+O

�

1

r

�

�

;

(2.13a)

2

Note that the proper gauge part 
an never be O(1=r

4

), otherwise all physi
al information,

i.e. the mass parameter �, would be 
ompletely relegated to it.
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or, in terms of the generator:

T is a symmetry() L

�

1

g

��

= 0

() L

�

(�)

g

��

= O

�

1

r

�

�

:

(2.13b)

Sin
e the generator � is just a ve
tor �eld whose 
omponents are fun
tions

of the 
oordinates, it is natural to expand it in r-power series around in�nity,

and we see from Eq. (2.13b) that its expression is determined but for O(1=r




)

terms:

� =

(
)

�

�

+O

�

1

r




�

: (2.14)

The

(
)

�

�

(whi
h is determined up to (1=r


�1

)-order terms) represents the ef-

fe
tive generator; it generates improper gauge transformations, i.e. transforma-

tions that leave the e�e
tive indu
ed metri
 invariant but do 
hange the metri
's

improper gauge part | thus modifying the system's state. The O(1=r




) term

generates proper gauge transformations whi
h modify the metri
's proper gauge

part and thus do not modify the system state (q.v. Benguria, Cordero and Teit-

elboim [9℄).

It is now evident that bulk symmetries are just a subgroup of the asymptoti


symmetries; the latter 
an even be an in�nite-dimensional group, as we shall

see e.g. in the 
ase of anti-de Sitter spa
e.

Till now, we have spoken only about symmetries whi
h leave the metri


�eld invariant; however, we 
an 
onsider other �elds on the manifold M, like

the dilaton � whose invarian
e is as mu
h important as the metri
's; in this


ase, the symmetry T must satisfy also the following 
ondition:

T(

1

�) =

1

� () T

�

(�)

�

�

=

(�)

� +O

�

1

r

�

�

; (2.15a)

or

L

�

1

� = 0() L

�

(�)

� = O

�

1

r

�

�

: (2.15b)

This additional requirement 
an lead to a redu
tion in the number of the initial

(metri
) symmetries (we shall 
all this `symmetry breaking'). Anyway, if one is

interested in having a symmetry group as large as possible, one 
an disregard


ondition (2.15) and 
onsider only 
ondition (2.13); of 
ourse, this is only feasible

as long as una

eptable physi
al 
onsequen
es do not arise, su
h as diverging


harges.

The Holographi
 Prin
iple

We have seen that the symmetries of a gravitational system 
an always be

tra
ked ba
k to surfa
e symmetries; this follows simply from Noether's Theorem:
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let

L =

Z

M

dV

p

�gL (2.16)

be the a
tion of a gravitational system model; it is invariant under a transfor-

mation T

�

if and only if its Lie derivative with respe
t to the transformation

generator � vanishes:

L

�

L =

Z

M

dV L

�

(

p

�g L) = 0: (2.17)

Sin
e

p

�gL is a s
alar density, and the Lie derivative of a s
alar density s 
an

be expressed as L

�

s � �

�

(�

�

s), the pre
eding equation be
omes:

L

�

L �

Z

M

dV �

�

(�

�

p

�gL) = 0; (2.18)

or, by Stokes' Theorem:

L

�

L �

Z

�M

ds

�

�

�

p

�gL = 0: (2.19)

Hen
e the invarian
e of a general gravitational a
tion is only determined by the

asymptoti
 behaviour of the latter.

However, one may ask whether this is just a 
onsequen
e of Noether's Theo-

rem, or of something deeper. For example, the fa
t that the invarian
e is shifted

from a (D+1)-dimensional 
ontext to a D-dimensional one 
ould be a signal of a


orresponden
e between two theories in di�erent dimensions. Su
h a 
onje
ture

is just the Holographi
 Prin
iple as formulated by Susskind [43℄, about whi
h

we spoke in the Introdu
tion (q.v. also Aharony, Gubser, Malda
ena, Ooguri,

Oz [2℄).

2.1.3 Conserved 
harges asso
iated to the asymptoti


symmetries

A 
lassi
al relativisti
 example

A system's invarian
e under a group of transformations gives rise to 
on-

served 
harges (Noether's Theorem); a plain example from General Relativity

is the following: 
onsider the equation for the matter stress-energy tensor:

r

�

T

��

= 0; (2.20)

now suppose there is an isometry, generated by the Killing ve
tor �eld �

�

whi
h

satis�es

L

�

g

��

�r

(�

�

�)

= 0; (2.21)
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ontra
t Eq. (2.20) with the Killing ve
tor �eld: from Eq. (2.21) and from T

��

's

being symmetri
 it follows that:

r

�

�

�

T

��

= 0: (2.22)

Go on to integrate this equation over a spatially in�nite four-dimensional vol-

ume V , whose upper and lower boundaries are two arbitrary three-dimensional

spa
elike hypersurfa
es, �V

t

00

and �V

t

0

, de�ned by the equations t

0

= 
onst.

and t

00

= 
onst.:

Z

V

p

�gr

�

�

�

T

��

= 0: (2.23)

The integrand in the last equation is a divergen
e and 
an be rewritten as a

sum of integrals over the boundary of V by Stokes' Theorem. If the matter

stress-energy tensor vanishes at spatial in�nity, the sum redu
es to:

Z

�V

t

00

p

hu

�

�

�

T

��

�

Z

�V

t

0

p

hu

�

�

�

T

��

= 0; (2.24)

sin
e the two hypersurfa
es were arbitrary, this means that the 
harge de�ned

by

C

t

(�)

def

=

Z

�V

t

p

hu

�

�

�

T

��

(2.25)

is 
onserved in time.

In the pre
eding example it is 
ru
ial the fa
t that a Killing ve
tor �eld,

i.e. a symmetry, exists globally over the whole manifold (`bulk' symmetry). The


harges asso
iated to asymptoti
 symmetries, instead, always require only lo
al

properties around in�nity; their study and 
omputation 
an be made by means

of the Hamiltonian formalism or by Brown and York's quasilo
al formalism:

ea
h formalism is related to the other; they will be dis
ussed in detail in the

following se
tions.

2.2 Asymptoti
 symmetries in the Hamiltonian

formalism

2.2.1 Regge and Teitelboim's pro
edure

The role of asymptoti
 symmetries be
ame 
lear with the development of the

Hamiltonian formalism for gravity theory; the way their 
harges are 
al
ulated

re
e
ts just this development.

The `�rst' gravitational Hamiltonian was indeed 
onstru
ted following about

the same steps we took in Se
. 1.2.2, but without a

ounting for the boundary

terms whi
h arise in the various appli
ations of Stokes' Theorem; hen
e its form

was simply:

Z

S

(NH +N

i

H

i

); (2.26)
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of 
ourse, the right equations of motion were found all the same, be
ause their

form is determined by the volume integral only.

It was noted �rst by Dira
 and DeWitt [26℄ the fa
t that the Hamilto-

nian (2.26) needs a boundary term whose form is

E

def

= �

Z

P

p

� ~n

k

(D

i

h

jk

�D

k

h

ij

)h

ij

; (2.27)

This integral is (asymptoti
ally) none but the term

E �

Z

P

NE (2.28a)

with

E

def

=

p

� u

�

u

�

2�

��

�E

�

; (2.28b)

E

�

def

=

p

� u

�

u

�

2�

�

��

; (2.28
)

that we have already seen in Se
. 1.2.2. DeWitt noti
ed that the gravitational

Hamiltonian would not yield linearized gravity theory and that there would

not be any de�nition of energy without the additional surfa
e term. In fa
t

it is the energy, be
ause the Hamiltonian volume integral vanish identi
ally by

virtue of the 
onstraints H = 0 and H

i

= 0. From this point of view, quoting

DeWitt, gravity theory is unique among �eld theories in that its energy may

always be expressed as a surfa
e integral. Therefore, the energy depends upon

the asymptoti
 
hara
teristi
s of the gravitational system. This fa
t is due to

the theory's being di�eomorphism-invariant: many of its degrees of freedom are

unphysi
al, and maybe the physi
al ones 
an be sought for in the boundary.

Regge and Teitelboim [39℄ were the �rst to give a formal and physi
al justi�-


ation for the presen
e of a surfa
e term in the gravitational Hamiltonian; they

showed that, without su
h term, the a
tion would be de�ned in a phase-spa
e

laking the traje
tories that should extremise it. In fa
t, suppose to strip the

a
tion (1.15) (without dilaton for simpli
ity) of its boundary terms and to use

it for the variational prin
iple: the variation would be:

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

ÆP

ij

)

�

Z

P

p

�

p

h

~n

l

[G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ 2N

i

ÆP

il

+ (2N

i

P

kl

�N

l

P

ik

Æh

ik

)℄;

(2.29a)

with

G

ijkl

def

=

1

2

p

h (h

ik

h

jl

+ h

il

h

jk

� 2h

ij

h

kl

): (2.29b)
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In order to obtain from the variation above the 
anoni
al equations of motion

_

h

ij

=

ÆH

1

ÆP

ij

; (2.30a)

_

P

ij

= �

ÆH

1

Æh

ij

; (2.30b)

it would be ne
essary for the surfa
e integrals to vanish. But 
onsider a physi-


ally reasonable solution su
h as S
hwarzs
hild's,

ds

2

= �

�

1�

2M

r

�

dt

2

+

�

1�

2M

r

�

�1

dr

2

+ r

2

d


2

; (2.31)

whi
h behaves asymptoti
ally like (in a Cartesian 
oordinate system):

g

tt

= �1 +O

�

1

r

�

; (2.32)

g

ij

= Æ

ij

+O

�

1

r

�

; (2.33)

one 
an easily 
onvin
e oneself that S
hwarzs
hild's solution does not make the

surfa
e integrals in (2.29a) vanish, hen
e it should not belong to the phase-spa
e

wherein the a
tion | stripped from its boundary terms | is well de�ned.

The surfa
e integral (2.27) does just this: it makes all anomalous surfa
e

terms in (2.29a) vanish, thus rede�ning the phase-spa
e in a physi
ally more ap-

propriate manner, enlarging it to 
ontain physi
ally quite reasonable solutions.

(En passant, we wish to mark that the 
ounterterm E

�

in (2.28) is absolutely

ne
essary for su
h rede�nition.)

The anomalous non-vanishing boundary terms are stri
tly related to the

asymptoti
 
onditions (2.32): di�erent asymptoti
 
onditions 
an make other

non-vanishing boundary terms appear, so that one would need other additional

surfa
e terms in the original Hamiltonian besides (2.27). Hen
e, the general

method is the following:

1. 
al
ulate the variation of the (bulk) Hamiltonian, thus obtaining the

boundary terms;

2. �x the asymptoti
 
onditions of the 
lass of solutions that are to belong to

phase-spa
e (generally all members of this 
lass are just like `ex
itations'

of the same `ground state' solution);

3. examine whi
h surfa
e integrals in the variation are asymptoti
ally non-

vanishing for the �xed asymptoti
 
onditions;

4. integrate the non-vanishing variational integrals so as to have �nite terms

whi
h are then subtra
ted from the original Hamiltonian.
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This way the variational prin
iple will be well de�ned. It should be noted that

steps 2. and 4. involve an impli
it 
hoi
e of a referen
e, or ba
kground, spa
etime

(the `ground state', related to the term E

�

). One 
ould also 
hoose to retain all

(integrated) surfa
e integrals, rather than the non-vanishing ones only; both


hoi
es yield a well-de�ned Hamiltonian anyway, and the same results. An

important point is that it is not always possible to integrate the variations so as

to have the appropriate integrals to be subtra
ted from the Hamiltonian. We

shall see some examples of this problems in the next 
hapter.

The method outlined above has been used by Regge and Teitelboim [39℄ with

Minkowski spa
e as referen
e spa
etime, by Brown and Henneaux [14℄ with

three-dimensional anti-de Sitter spa
e as referen
e spa
etime, and by Cadoni

and Mignemi [19℄ for dilatoni
 gravity on two-dimensional anti-de Sitter spa
e;

in the present work, we shall adopt this method (but not ex
lusively) for dila-

toni
 gravity on three-dimensional anti-de Sitter spa
e.

We have already seen how the spe
i�
ation of asymptoti
 
onditions deter-

mines a group of asymptoti
 symmetries. If one lets the Hamiltonian evolve

under an asymptoti
-symmetry generator (introdu
ing the latter in the lapse

and shift as explained in Se
. 1.2.3), then the boundary term will give the as-

so
iated 
harge (q.v. Benguria, Cordero, Teitelboim [9℄): the bulk term of the

Hamiltonian gives no 
ontribute thereto, sin
e the 
onstraints H and H

i

van-

ish; this fa
t 
learly means that the system is indi�erent to the a
tion of the

generator upon its bulk.

2.2.2 Re
ently adopted Hamiltonian surfa
e terms

In the most re
ent papers on the gravitational Hamiltonian, all steps seen

in Se
. 1.2.2 are usually taken in its derivation, and all boundary terms are

retained, so that a general Hamiltonian appears as:

H

def

=

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

A

J

A

); (2.34)

where all the information about the 
harges is thus asso
iated with the boundary

integral

Z

P

(

~

NE �

~

N

A

J

A

) =

Z

P

p

� [

~

N(�2n

�

r

�

� + 2�k �E

�

)

�

~

N

A

(2

p

� 


Ai

n

j

P

ij

� J

�

A

)℄;

(2.35)

with

~

N ~u

�

+

~

N

�

= Nu

�

+ N

�

. Sin
e the Hamiltonian above should be well-

de�ned, one infers that its boundary integral (2.35) should be equivalent to the
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following:

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�)(h

ij

� h

�

ij

)℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)(h

ij

� h

�

ij

)N �

k

�

+ 2�

p

h [�

j

N(� � �

�

)�N�

j

(� � �

�

)℄

+ (2N

i

P

kl

�N

l

P

ik

)(h

ik

� h

�

ik

)

+ 2N

i

(P

il

� P

�

il

)�N

l

P

�

(� � �

�

)g;

(2.36)

whi
h is just the one derived after Regge and Teitelboim's method. Who writes

has not veri�ed this presumed equivalen
e. We leave this important question

aside by now; we shall use the term (2.35) to 
al
ulate the 
harge, and only then

shall we draw some 
on
lusions, 
omparing the results with the ones obtained

by the term �a la Regge and Teitelboim.

The surfa
e term (2.35) is not the only one to have appeared in the literature;

another one is e.g. Hawking and Hunter's [30℄):

Z

P

(NE �N

i

J

i

) (2.37a)

with

E

def

=

p

�

�

2k � 2

�


osh�

r

�

~u

�

�

�E

�

; (2.37b)

J

i

def

= 2

p

� ~n

j

P

ji

� J

�

i

; (2.37
)

whi
h we have already seen in Se
. 1.2.4.

2.3 Asymptoti
 symmetries in the quasilo
al

formalism of Brown and York

2.3.1 Brown and York's quasilo
al stress-energy tensor

De�nition

Brown and York [17℄ have developed a formalism for the de�nition of a

quasilo
al energy and 
onserved 
harges of a gravitational system, by means of

an analogy with the Hamilton-Ja
obi 
lassi
al formalism for point dynami
s.

They 
onsider the 
lassi
al a
tion whi
h des
ribes the unidimensional motion

of a point parti
le:

S

1

=

Z

dt

�

p

dx

dt

�H

1

(x; p; t)

�

; (2.38)
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by parameterizing the system's traje
tory in phase-spa
e with the parameter �,

the a
tion takes the form:

S

1

=

Z

�

00

�

0

d�

�

p

dx

d�

�

dt

d�

H

1

(x; p; t)

�

; (2.39)

and its variation is:

ÆS

1

= [terms giving the equations of motion℄

+ p Æxj

�

00

�

0

�H

1

Ætj

�

00

�

0

:

(2.40)

The last two terms in the variation vanish sin
e the a
tion's domain is the spa
e

of traje
tories having �xed-valued end-points, hen
e the a
tion is extremised

only if the equations of motion hold. Instead, if we take as domain the spa
e of

traje
tories satisfying the equations of motion but having free-valued end-points,

the �rst term in the variation (2.40) vanish, so that

ÆS

1


l

= p


l

Æxj

�

00

�

0

�H

1


l

Ætj

�

00

�

0

; (2.41)

where `
l' denotes evaluation in the new domain.

From Eq. (2.41) we have the Hamilton-Ja
obi equations

p


l

j

�

00

=

�S

1


l

�x

00

; (2.42a)

H

1


l

j

�

00

= �

�S

1


l

�t

00

; (2.42b)

where x

00

= x(�

00

) and t

00

= t(�

00

). Eq. (2.42b) de�nes the system's energy

at point �

00

, and it is taken by Brown and York as the starting point for the


onstru
tion of a quasilo
al energy from the gravitational a
tion.

Consider the a
tion (1.9) restri
ted to the non-dilatoni
 
ase:

L

def

= �

Z

M

p

�gR

M

+ 2�

Z

S

00

S

0

p

hK

� 2�

Z

B

p

�
�+ 2�

Z

P

00

P

0

p

� �+ L

�

+ L

mat

;

(2.43)

the domain is the spa
e of the metri
s whi
h indu
e a �xedD-dimensional metri


on the boundary �M; in fa
t, upon examining the variation:

ÆL = ��

Z

M

p

�gG

��

Æg

��

+

Z

S

00

S

0

P

��

Æh

��

+

Z

B

�

��

Æ


��

+

Z

P

00

P

0

�

��

Æ�

��

+

Z

B

�

�

ab

Æ


ab

+

1

2

Z

M

p

�g T

��

Æg

ab

;

(2.44)

sin
e Æh

ij

= Æ


ab

= Æ�

AB

� 0, the a
tion is extremised if the equations of

motion G

��

=

1

2�

T

��

hold.

40



However, also in this 
ase we 
an 
onsider a new domain, i.e. the spa
e of

the metri
s on M whi
h satisfy the equations of motion and are not �xed on

the boundary; in analogy with Eq. (2.41), the a
tion's variation now redu
es to:

ÆL


l

=

Z

S

00

S

0

P


l

ij

Æh

ij

+

Z

P

00

P

0

�


l

ij

Æ�

ij

+

Z

B

�


l

ab

Æ


ab

+

Z

B

�

�

ab

Æ


ab

;

(2.45)

where `
l' again denotes the new domain.

If we want to look for an expression that should be the analogue of Hamilton-

Ja
obi equation (2.42b), we must �rst note that, in the gravitational 
ase,

the quantity on the boundary is not just the elapsed time (t

00

� t

0

) as it is

in Eq. (2.42b), but it is a metri
 


ab

whi
h determines every timelike and spa
e-

like interval in the manifold B. The last 
onsideration leads Brown and York to

the de�nition of a surfa
e stress-energy tensor asso
iated to B:

�

ab

def

=

2

p

�


ÆL


l

Æ


ab

=

2

p

�


(�


l

ab

��

�

ab

) = 2(�


l

ab

��

�

ab

): (2.46)

In the above de�nition, it is important to note that the matter term L

mat

as

well 
ontributes to the tensor �

ab

, whi
h thus 
hara
terizes the whole gravity-

matter system. That does not happen with the usual stress-energy tensor

T

��

�

2

p

�g

ÆL

mat

Æg

��

; (2.47)

whi
h 
hara
terizes only the system's matter �elds.

Additive 
ounterterms

The term L

�

[


ab

℄ in Eq. (2.43), whi
h depends only on the metri
 indu
ed

on B, is the analogue of an arbitrary fun
tion S

0

subtra
ted from the 
lassi
al

a
tion (2.38), whi
h depends only on the 
oordinates of the end-points of the

system's traje
tory:

S[x; p℄ = S

1

[x; p℄� S

0

[x

0

; x

00

; t

0

; t

00

℄; (2.48)

this fun
tion does not 
ontribute to the equations of motion sin
e its variation

vanishes by virtue of the end-point value �xation; however, its presen
e does

shift the de�nition of the zero-point energy:

H


l

j

�

00

= H

1


l

j

�

00

�H

0

j

�

00

= �

�

�S

1


l

�t

00

�

�S

0

�t

00

�

: (2.49)

In an analogous way, the fun
tional L

�

does not alter the equations of motion, but

does intervenes in the de�nition of the momentum 
onjugate to 


ab

and hen
e in

the de�nition of the quasilo
al stress-energy tensor, as Eq. (2.46) plainly shows.
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We 
an �nd some requirement to be satis�ed by the 
ounterterm, by reason-

ing as follows: the various tangential and parallel proje
tions of the quasilo
al

tensor with respe
t to the boundary B give the energy, momentum, and stress

densities:

E

def

=

p

� ~u

a

~u

b

�

ab

= �

ÆL


l

ÆN

; (2.50a)

J

A

def

= �

p

� �

Aa

~u

b

�

ab

=

ÆL


l

ÆN

A

; (2.50b)

s

AB

def

=

p

�
 �

A

a

�

B

b

�

ab

= 2

ÆL


l

Æ�

AB

; (2.50
)

their expli
it form is (note that no dilaton �eld is 
onsidered at the moment):

E = 2�

p

� k �E

�

; (2.51a)

J

A

= �2

p

� 


Ai

n

j

P

ij

� J

�

A

; (2.51b)

s

AB

= 2�

p

� [k

AB

+ �

AB

(n

�

u

�

r

�

u

�

� k)℄� s

�

AB

: (2.51
)

The quantities E and J

A

are the same as those in the surfa
e term (2.35); we

have already mentioned the fa
t that they depend ex
lusively on the 
anoni
al

variables only if the quantities E

�

and J

�

A

do. For this to happen, it is ne
essary

that the 
ounterterm L

�

be a linear fun
tional of the (boundary) lapse and shift:

L

�

def

=

Z

B

(

~

NE

�

�

~

N

A

J

�

A

): (2.52)

De�nition with respe
t to a referen
e spa
etime A way to de�ne the


ounterterm L

�

with respe
t to a referen
e spa
etime (`ground state') is the

following: one 
hooses a parti
ular solution (M

�

; g

�

��

) of the equations of motion

(preferably one with ni
e properties su
h as stati
ity), to be 
onsidered as a

ground state, and isometri
ally embeds the boundary B therein; the quantitiesE

�

and J

�

A

are then de�ned as the energy and the momentum as 
al
ulated in the

embedding; hen
e it is obvious that E and J

A

will vanish for the ground state.

As a 
onsequen
e of this de�nition of L

�

, the term s

�

AB

is de�ned as

s

�

AB

def

= 2

ÆL

�

Æ�

AB

= 2

~

N

ÆE

�

Æ�

AB

+

~

N

C

ÆJ

�

C

Æ�

AB

; (2.53)

whi
h follows from the variation

ÆL

�

=

Z

B

"

E

�

Æ

~

N + J

�

A

Æ

~

N

A

+

 

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

!

Æ�

AB

#

; (2.54)

su
h a de�nition for s

�

AB

is not equivalent to the de�nition with respe
t to the

referen
e spa
etime | as opposed to E

�

and J

�

A

's de�nitions.

This method of de�ning the 
ounterterm L

�

is physi
ally reasonable, but

presents two problems: �rst, the 
hoi
e of the referen
e spa
etime; and se
ond,
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the fa
t that the isometri
al embedding may happens not to be unique or even

not to exist. Anyway, su
h an embedding does exist and is unique in important

examples like Minkowski or anti-de Sitter spa
e; hen
e many authors, besides

Brown and York, like Hawking and Horowitz [29℄, Hawking and Hunter [30℄,

Booth and Mann [11, 12℄, Brown, Creighton and Mann [15℄, Brown, Lau and

York [16℄, Bose and Dadhi
h [13℄, use this 
ounterterm de�nition

3

Intrinsi
 de�nition Balasubramanian and Kraus [5℄ have re
ently proposed

an alternative way of spe
ifying the surfa
e term L

�

, whi
h uses the main in-

trinsi
 metri
 obje
ts of B (like metri
, volume element, s
alar 
urvature, Ri

i

and Riemann tensors, et
.) and the requirement that the system's 
harges be

asymptoti
ally divergen
eless. This method is geometri
ally reasonable (no

referen
e-spa
etime 
hoi
es or embedding problems), but yields anomalous re-

sults sometimes (e.g., the energy inside an ellipsoidal surfa
e in Minkowski spa
e

is di�erent from that inside a sphere, whi
h obviously vanishes). However, as

has been noti
ed by Lau [33℄, the `intrinsi
' method and the `ba
kground' one

are asymptoti
ally equivalent. We shall make use of this equivalen
e in some of

the 
al
ulations to follow.

The `intrinsi
' method is used, besides Balasubramanian and Kraus [5℄ and

Lau [33℄, also by Mann [36℄, and by Emparan, Johnson and Myers [28℄.

Equation of motion for the quasilo
al tensor and 
onserved 
harges

The similarity between the de�nitions of the matter tensor T

��

and of the

quasilo
al one �

ab

extends to a similarity in their equations of motion.

In fa
t, the requirement that the a
tions L and L

mat

be (separately) invariant

under di�eomorphisms yields the B-boundary 
onstraint equation

4

:

2�

b

�


l

ab

= �


a

�

n

�

T

��

; (2.55)

when
e, substituting the de�nition (2.46), we have the equation of motion for

the quasilo
al tensor:

�

b

�

ab

= �


a

�

n

�

T

��

: (2.56)

The equation above di�ers from the usual energy-stress tensor's one (r

�

T

��

=

0) by the presen
e of a sour
e term.

Now, suppose that B possesses a Killing ve
tor �eld �

a

:

L

�




ab

��

(a

�

b)

= 0; (2.57)


ontra
ting Eq. (2.56) with �

a

, using Eq. (2.57), and integrating between two

arbitrary spa
elike surfa
es P

t

0

and P

t

00

in B, one has:

Z

t

00

t

0

p

�
 �

a

�

b

�

a

b

= �

Z

P

t

00

P

t

0

p

�
 �

a




a�

n

�

T

��

; (2.58)

3

In fa
t, the de�nitions given by some of the listed authors di�er slightly from the one

presented here; but all the listed authors' de�nitions use a ba
kground spa
etime.

4

Note that this equation is not equivalent to the Einstein equation with one index proje
ted

normally, and the other index proje
ted tangentially to B, as Brown and York [17℄ say.
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whi
h, by Stokes' Theorem, is just:

�

Z

P

00

t

p

� �

a

~u

b

�

ab

+

Z

P

0

t

p

� �

a

~u

b

�

ab

= �

Z

t

00

t

0

p

�
 �

a




�a

n

�

T

��

; (2.59)

hen
e we �nd Brown and York's equation for the 
harge asso
iated to the Killing

ve
tor �

a

; it 
an be written as:

Q

P

t

00

(�) �Q

P

t

0

(�) =

Z

P

t

00

P

t

0

p

�
 �

a




a�

n

�

T

��

; (2.60)

where

Q

P

t

(�)

def

=

Z

P

t

p

� �

a

~u

b

�

aa

(2.61)

is the 
harge asso
iated to the killing ve
tor �eld �

a

evaluated at P

t

.

One 
an see that the 
hargeQ

P

(�) does not depend on the 
hoi
e of a spe
i�


surfa
e P (so that the index `

P

' 
an be omitted) only if, in B, one has T

��

= 0

(suÆ
ient 
ondition) or n

�

T

��




�a

�

a

= 0 (ne
essary 
ondition); in su
h 
ases

the 
harge is 
onstant in time and represents a 
onserved 
harge asso
iated to

the Killing ve
tor �. Note that the 
harge depends on the normalisation of the

Killing ve
tor, indeed it is evident that Q(
�) = 
Q(�). When the Killing ve
tor

is timelike (hen
e the hypersurfa
e B is stationary), � � �=�t, its 
harge evalu-

ated at P is identi�ed with the energy inside whi
hever spa
elike hypersurfa
e S

having P as its boundary.

Note that the pseudo-ve
tor

p

� ~u

b

�

ab

in Eq. (2.61) 
an be de
omposed as

follows by means of Eqs. (2.50):

p

� ~u

b

�

ab

� �E~u

a

� J

a

; (2.62)

where E and J

a

are just the energy and momentum densities of Eq. (2.35): this

implies that the expression for the 
harge (2.61) is just (minus) the Hamiltonian

boundary integral (2.35), with �

a

=

~

N ~u

a

+

~

N

a

. It follows that using the quasilo-


al formalism for 
al
ulating the asymptoti
-symmetry 
harges is equivalent to

using the Hamiltonian method dis
ussed previously, but with a boundary term

like (2.35) instead of a Regge-Teitelboim one.

2.3.2 Quasilo
al tensor for a dilaton gravity theory

De�nition

Now we wish to extend the de�nition of the quasilo
al stress-energy tensor

to the 
ase of a dilaton gravity theory des
ribed by the a
tion (1.9):

L

def

= �

Z

M

p

�g �(R

M

+�) + 2�

Z

S

00

S

0

p

h �K

� 2�

Z

B

p

�
 ��+ 2�

Z

P

00

P

0

p

� �� + L

�

+ L

mat

:

(2.63)
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The variation of the a
tion above (omitting the terms 
oming from the vari-

ation of the matter �elds) is:

ÆL =

Z

M

(�

��

Æg

��

+�

�

Æ�) +

Z

S

00

S

0

(P

��
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Z
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Æ


��

+�

�
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Z
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0

(�

��

Æ�

��

+ �

�

Æ�)

+

Z

B

(�

�

ab

Æ


ab

+�

�

�

Æ�) +

Z

M

1

2

p

�g T

��

Æg

ab

;

(2.64)

we 
onsider the variation in a 
on�guration-spa
e where the equations of motion

are satis�ed and the indu
ed boundary metri
s are not �xed:

ÆL


l

=

Z

S

00

S

0

(P


l

��

Æh

��

+ P

�


l
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Z
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l

��

Æ


��

+�

�


l

Æ�)

+

Z

P
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P

0
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l

��

Æ�

��

+ �

�


l

Æ�) +

Z

B

(�

�

ab

Æ


ab

+�

�

�

Æ�);

(2.65)

and we de�ne the quasilo
al stress-energy tensor:

�

ab

def

=

2

p

�


ÆL


l

Æ


ab

=

2

p

�


(�


l

ab

��

�

ab

) = 2(�


l

ab

��

�

ab

): (2.66)

Again, the normal and tangential proje
tions to B give the energy, momentum,

and stress densities:

E

def

=

p

� ~u

a

~u

b

�

ab

= �

ÆL


l

ÆN

; (2.67a)

J

A

def

= �

p

� �

Aa

~u

b

�

ab

=

ÆL


l

ÆN

A

; (2.67b)

s

AB

def

=

p

�
 �

A

a

�

B

b

�

ab

= 2

ÆL


l

Æ�

AB

; (2.67
)

but this time their expli
it forms are:

E = 2�

p

� (�k � ~u

�

r

�

�)�E

�

; (2.68a)

J

A

= �2

p
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Ai

n

j

P

ij

� J

�

A

; (2.68b)

s

AB

= 2�

p

� f�[k

AB

+ �

AB

(n

�

u

�

r

�

u

�

� k)℄

+ �

AB

~u

�

r

�

�g � s

�

AB

:

(2.68
)

Counterterms

De�nition with respe
t to a referen
e spa
etime As in the non-dilatoni



ase, the quantitiesE and J

A

depend ex
lusively on the 
anoni
al variables only

if E

�

and J

�

A

do. Hen
e, just like in the non-dilatoni
 
ase, we may require the


ounterterm L

�

to be a linear fun
tional of the (boundary) lapse and shift:

L

�

def

= �

Z

B

(

~

NE

�

�

~

N

A

J

�

A

); (2.69)
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and its 
onstru
tion with respe
t to the referen
e spa
etime follows the same

steps as in the non-dilatoni
 
ase, but with the additional requirement that the

embedding of B into the referen
e spa
etime should be not only isometri
, but

`isodilatoni
' as well.

From the variation of ylio, whi
h now reads:

ÆL

�

= �

Z

B

"

E

�

Æ

~

N + J

�

A

Æ

~

N

A

+

 

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

!

Æ�

AB

+

 

~

N

ÆE

�

Æ�

+

~

N

A

ÆJ

�

A

Æ�

!

Æ�

#

;

(2.70)

we obtain the expressions for s

�

AB

and �

�

�

:

s

�

AB

def

= 2

ÆL

�

Æ�

AB

= 2

~

N

ÆE

�

Æ�

AB

+

~

N

A

ÆJ

�

A

Æ�

AB

; (2.71a)

�

�

�

def

=

ÆL

�

Æ�

=

~

N

ÆE

�

Æ�

+

~

N

A

ÆJ

�

A

Æ�

: (2.71b)

Note that both s

�

AB

and �

�

�

are not equivalent to those 
al
ulated with respe
t

to the referen
e spa
etime.

This method of 
onstru
ting a 
ounterterm su�ers the problems that we saw

in the non-dilatoni
 
ase, namely the 
hoi
e of the referen
e spa
etime and the

existen
e and uniqueness of the embedding; moreover, the additional diÆ
ulty

of having an isodilatoni
 embedding now arises. This method is adopted by

Lau [32℄.

Intrinsi
 de�nition Balasubramanian and Kraus' method, a

ording to

whi
h the 
ounterterm is 
onstru
ted from the boundary intrinsi
 metri
 ob-

je
ts by demanding non-diverging 
harges, is no more univo
al when applied

to a dilatoni
 theory. This happens be
ause a s
alar �eld (the dilaton) is

now to be in
luded among the boundary intrinsi
 metri
 obje
ts, and there is

almost no limit to the number of intrinsi
 terms that 
an be 
onstru
ted from

a s
alar �eld, and of the terms whi
h give a �nite 
ontribution to the 
harges,

in parti
ular. We shall 
learly see this fa
t in the 
al
ulations to follow.

Equation of motion for the quasilo
al tensor

The equation of motion for the quasilo
al tensor needs a more 
areful analysis

in this 
ase, be
ause of the presen
e of the dilaton.

from the fa
t that the total and the matter a
tions L and L

mat

are

di�eomorphism-invariant, we have the 
onstraint on B:

2�

b

�


l

ab

= �

�


l




ab

�

b

� � 


a

�

n

�

T

��

; (2.72)

when
e the equation of motion

�

b

�

ab

= �

�


l




ab

�

b

� � 


a

�

n

�

T

��

(2.73)
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follows from the de�nition (2.66) of the quasilo
al tensor.

Eq (2.73) is very di�erent from Eq. (2.56): it 
ontains an additional dilatoni


term, �

�


l




ab

�

b

�, whi
h a
ts as sour
e together with the semi-proje
tion of the

matter stress-energy tensor 


a

�

n

�

T

��

. The presen
e of the additional dilatoni


term has two main 
onsequen
es, whi
h do not appear in Brown and York's

analysis: �rst, even in the absen
e of matter there 
an be non-
onserved 
harges,

due to the new sour
e term; se
ond, the subtra
tion of a 
ounterterm be
omes

more subtle. We go on analysing these two points in more detail.

Conditions for 
harge 
onservation

Contra
t Eq. (2.73) with a Killing ve
tor �eld for B, �, and integrate between

two arbitrary spa
elike surfa
es in B so as to obtain:

Z

t

00

t

0

p

�
 �

a

�

b

�

a

b

=

Z

t

00

t

0

p

�
 (�

�


l

�

a

�

a

� � �

a




a�

n

�

T

��

); (2.74)

whi
h, by Stokes' Theorem, is equivalent to

Q

P

t

00

(�) �Q

P

t

0

(�) = �

Z

t

00

t

0

p

�
 (�

�


l

�

a

�

a

� � �

a




a�

n

�

T

��

); (2.75)

where the 
harge is de�ned as

Q

P

t

(�)

def

=

Z

P

t

p

� �

a

~u

b

�

ab

: (2.76)

One 
an 
learly see that the vanishing of the matter sour
e term, �

a




a�

n

�

T

��

,

does not ne
essarily imply 
harge 
onservation anymore, for now we have also

a dilatoni
 term whi
h 
an be non-vanishing even when the matter term does

vanish. For this reason, one 
an require the following additional 
ondition for

the Killing ve
tor �eld �, like Creighton and Mann [24℄ do:

L

�

� � �

a

�

a

� = 0; (2.77)

i.e. one demands that the ve
tor �eld � be a symmetry not only for the metri


�eld, but also for the dilaton �eld. With this requirement the integrands in

Eq. (2.74) be
ome

�

b

�

a

�

a

b

= ��

a




a�

n

�

T

��

; (2.78)

and upon integration one now obtains:

Q

P

t

00

(�) �Q

P

t

0

(�) = �

Z

t

00

t

0

p

�
 �

a




a�

n

�

T

��

; (2.79)

whi
h is analogous to Eq. (2.58).

Creighton and Mann's requirement (2.77) is quite natural be
ause the system

is 
hara
terized by both the metri
 and the dilaton �elds. Moreover Eq. (2.77)
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is usually satis�ed in the de�nition of the quasilo
al energy, sin
e the latter

quantity is usually asso
iated with a timelike Killing ve
tor �eld and the dilaton

is usually independent of time. Nevertheless 
ondition (2.77) redu
es the number

of symmetries in the system.

This fa
t is quite general: the presen
e of a non-
onstant dilaton breaks the

system's symmetries (isometries and asymptoti
 symmetries), and only a part

of them survives; this part usually gives 
onserved 
harges just like the mass;

the remaining part gives either in�nite or �nite but non-
onserved 
harges. In

the se
ond eventuality, we 
an disregard 
ondition (2.77) if we are interested

in having a large number of symmetries rather than 
harges, sin
e we have no

una

eptable physi
al 
onsequen
es, like diverging 
harges. In fa
t, in studying

asymptoti
 symmetries, we shall not be worried about the stri
t holding of

Eq. (2.77), and Eq. (2.75) will be our equation for 
harge 
onservation.

2.3.3 Problems with Brown and York's formalism in the

asymptoti
 limit

In Brown and York's de�nition for the 
harge asso
iated to a ve
tor �eld �,

it is of fundamental importan
e the requirement that su
h a ve
tor �eld be a

Killing ve
tor �eld for the boundary B,

L

�




ab

��

(a

�

b)

= 0; (2.80)

whi
h implies

�

a

�

a

= 0; (2.81)

in fa
t this requirement is a 
ondition for the following passages, whi
h lead

from Eq. (2.73) to Eq. (2.58):

�

a

�

b

�

b

a

=�

b

(�

a

�

b

a

)� �

b

a

�

b

�

a

=�

b

(�

a

�

b

a

)�

1

2

�

ab

�

(a

�

b)

=�

b

(�

a

�

b

a

);

(2.82)

where in the last passage index symmetry of �

ab

has been used, besides

Eq. (2.80). Even this other following series of passages, that leads from

Eq. (2.73) to Eq. (2.74), makes use of 
ondition (2.81):

��

a

�

a

(��

�


l

) = ��

a

(�

a

��

�


l

) + ��

�


l

�

a

�

a

= ��

a

(�

a

��

�


l

): (2.83)

In the following 
hapter, we should like to use Brown and York's formalism

to 
al
ulate the 
harges asso
iated to the generator of an asymptoti
 symmetry;

but su
h a generator will not be a Killing ve
tor �eld for B in general; it will

not even be tangent to B in general. For this reason we shall adapt Brown and

York's formulation to our need as follows: we shall take the proje
tion of the

generator � onto B, �

ka

def

= 


a

�

�

�

, and require it to be a Killing ve
tor �eld for B

only asymptoti
ally :

L

�

k




ab

��

(a

�

k

b)

r!1

���! 0; (2.84)
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when
e

�

a

�

ka

r!1

���! 0: (2.85)

Note that, for the 
harge-
onservation equations to be valid, we 
ould require

the 
onditions:

�

ab

�

(a

�

k

b)

r!1

���! 0 (2.86a)

and

��

�


l

�

a

�

ka

r!1

���! 0: (2.86b)

This manoeuvre, whi
h is ne
essary if we want to use the quasilo
al formal-

ism together with the asymptoti
 symmetries, signals a de�
ien
y of Brown and

York's formalism in dealing with general symmetries. We will dis
uss about this

in detail in the 
on
luding Chapter.
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Chapter 3

Asymptoti
 symmetries in

anti-de Sitter spa
e

3.1 Hamiltonian formalism

3.1.1 An example: asymptoti
 symmetries in Minkowski

spa
e

As an introdu
tive example of the analysis of asymptoti
 symmetries we 
on-

sider a 
lass of solutions for General Relativity in a quadridimensional spa
etime

whose ground state is 
at spa
e

1

ds

2

= �dt

2

+ Æ

ij

dx

i

dx

j

: (3.1)

The Lagrangian in this 
ase is:

L = �

Z

M

p

�gR

M

+ 2�

Z

S

00

S

0

p

hK � 2�

Z

B

p

�
 �

+ 2�

Z

P

00

P

0

p

� �+ L

�

;

(3.2)

and the a
tion in 
anoni
al form is:

S =

Z

t

00

t

0

�

Z

S

(P

��

_

h

��

�NH �N

i

H

i

)�

Z

P

(

~

NE �

~

N

i

J

i

)

�

;

(3.3)

so that the Hamiltonian takes the following form:

H =

Z

S

(NH +N

i

H

i

) +

Z

P

(

~

NE �

~

N

i

J

i

): (3.4)

1

Cartesian 
oordinates will be used in the present se
tion
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Firstly, we 
onsider the bulk Hamiltonian only:

H

1

=

Z

S

(NH +N

i

H

i

); (3.5)

and we pro
eed to �nd its suitable boundary term by Regge and Teitelboim's

method (q.v. Se
. 2.2.1). Therefore we must 
ompute the variation of Eq. (3.5):

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

℄;

(3.6)

and we must establish the asymptoti
 
onditions for a given 
lass of solutions:

we 
hoose the 
lass of stati
, spheri
ally simmetri
, asymptoti
ally 
at solutions,

whi
h are des
ribed by the following asymptoti
 
onditions:

g

tt

= �1 +O

�

1

r

�

; (3.7)

g

ij

= Æ

ij

+O

�

1

r

�

: (3.8)

The asymptoti
 symmetry group of this asymptoti
 
onditions is generated

by

A

�

=

�

1 +O

�

1

r

��

�

�x

�

; (3.9a)

B

�

=

�

�

�

�

x

�

+O

�

1

r

��

�

�x

�

with �

��

= ��

��

; (3.9b)

where one should noti
e the presen
e of a proper gauge part O(1=r); these

generators form the Poin
ar�e group.

For simpli
ity, we 
onsider the a
tion of the generator A

0

only, so that the

lapse and shift are, by Eqs. (1.22),

N = 1 +O

�

1

r

�

; (3.10a)

N

i

= O

�

1

r

�

; (3.10b)

upon 
al
ulation, one 
an see that the surfa
e term of Eq. (3.6) whi
h does not

vanish is:

��

Z

P

p

�

p

h

~n

l

G

ijkl

ND

k

Æh

ij

; (3.11)
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and integrating its variation we �nd

�J = ��

Z

P

p

� ~n

k

N(D

i

h

jk

�D

k

h

ij

)h

ij

; (3.12)

whi
h is just the term to be subtra
ted from the Hamiltonian (3.5) so as to

make the latter well-de�ned.

If we 
al
ulate the 
harge asso
iated with the generatorA

0

for S
hwarzs
hild's

solution (whi
h belong to the 
lass of solutions here 
onsidered), we �nd that

it is just the bla
k-hole mass:

J

�

�

�t

�

= H

�

�

�t

�

= �

Z

P

p

� ~n

k

(D

i

h

jk

�D

k

h

ij

)h

ij

=M: (3.13)

3.1.2 Asymptoti
 symmetries in three-dimensional anti-

de Sitter spa
e

First 
hoi
e for the asymptoti
 
onditions

We go on to make an analogous analysis for a three-dimensional theory with

a 
osmologi
al 
onstant; our analysis follows Brown and Henneaux's [14℄.

As we saw in Se
. 1.3.2, a simple solution for this 
ase is (three-dimensional)

anti-de Sitter spa
e; there are bla
k-hole solutions as well,

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

�A

2

�

2

)

�1

dr

2

+ 2�Adt d� + (r

2

�A

2

)d�

2

;

(3.14)

and it is quite natural to 
onsider these solutions as ex
itations of the ground

state

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

+ r

2

d�

2

: (3.15)

Hen
e the ex
ited states share the following asymptoti
 
onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.16a)

g

t�

= O(r

0

); (3.16b)

g

tr

= 0; (3.16
)

g

��

= r

2

+O(r

0

); (3.16d)

g

�r

= 0; (3.16e)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

: (3.16f)

The asymptoti
 symmetry group for these 
onditions is generated by the ve
tor

�elds �=�t and �=�� (proper gauge part omitted).

Consider the Hamiltonian

H

1

=

Z

S

(NH +N

i

H

i

); (3.17)
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whose variation is

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

℄:

(3.18)

If we 
onsider the evolution led by a generator whi
h is a linear 
ombination

of �=�t and �=��, i.e. with lapse and shift give by:

N = �r +O

�

1

r

�

; (3.19a)

N

�

= O

�

1

r

2

�

; (3.19b)

N

r

= O

�

1

r

�

; (3.19
)

we �nd that the non-vanishing term for the 
onditions (3.16) is

�

Z

P

p

�

p

h

~n

l

(�G

ijkl

ND

k

Æh

ij

+ 2N

i

ÆP

il

); (3.20)

whi
h leads to the surfa
e term for the Hamiltonian:

J =

Z

P

p

�

�

p

h

�

~n

l

[�G

ijkl

ND

k

h

ij

+ 2N

i

(P

il

� P

�

il

)℄: (3.21)

Cal
ulation of the 
harges asso
iated to �=�t and �=�� yields:

J

�

�

�t

�

= H

�

�

�t

�

= � (3.22a)

J

�

�

��

�

= H

�

�

��

�

= �A (3.22b)

and we �nd the mass and the angular momentum.

Se
ond, more general 
hoi
e of asymptoti
 
onditions

We should like to 
onsider a more general asymptoti
 behaviour than (3.16),

hoping thus to enri
h the system's asymptoti
 symmetry group with new sym-

metries: it would be desirable to re
over the full isometry group of anti-de Sitter

spa
e | just as it happened with the Poin
ar�e group for Minkowski spa
e in

the previous example.

We 
an try to realize this purpose by seeking for the smallest 
lass of asymp-

toti
 
onditions whi
h 
ontains 
onditions (3.16) and is 
losed under the a
tion

of anti-de Sitter spa
e's isometries. In order to do this we 
an simply apply
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the isometry generators to 
onditions (3.16) repeatedly; thus we �nd the new

asymptoti
 
onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.23a)

g

t�

= O(r

0

); (3.23b)

g

tr

= O

�

1

r

3

�

; (3.23
)

g

��

= r

2

+O(r

0

); (3.23d)

g

�r

= O

�

1

r

3

�

; (3.23e)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

: (3.23f)

But, to our surprise, the symmetry group for the 
onditions (3.23) is not

just SO(2; 2) (even though it does 
ontain SO(2; 2) by 
onstru
tion): rather, it is

the in�nite-dimensional group of 
onformal transformations in two dimensions:

� =

�

"(t; �) +

1

�

2

r

2

�"(t; �) +O

�

1

r

4

��

�

�t

+

�

!(t; �) +

1

�

2

r

2

�!(t; �) +O

�

1

r

4

��

�

��

+

�

r�(t; �) +O

�

1

r

��

�

�r

;

(3.24a)

with

�

2

�

�

"(t; �) = �

t

!(t; �); (3.24b)

�

t

"(t; �) = �

�

!(t; �) = ��(t; �); (3.24
)

�"(t; �) = �

1

2�

2

�

t

�(t; �); (3.24d)

�!(t; �) =

1

2

�

�

�(t; �): (3.24e)

Be
ause of the periodi
ity in the angular variable, we 
an expand the genera-

tors (3.24) in a Fourier series, obtaining the following 
ountable basis:

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) 
os(n�) +O

�

1

r

4

��

�

�t

�

��

1 +

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

�

℄

�

��

+

�

rn sin(n�t) 
os(n�) +O

�

1

r

��

�

�r

(3.25a)

55



B

n

= B

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

��

�

�t

�

��

1 +

n

2

2�

2

r

2

�


os(n�t) 
os(n�) +O

�

1

r

4

��

�

��

+

�

rn 
os(n�t) sin(n�) +O

�

1

r

��

�

�r

(3.25b)

C

n

= �C

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) 
os(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�


os(n�t) sin(n�) +O

�

1

r

4

��

�

��

�

�

rn 
os(n�t) 
os(n�) +O

�

1

r

��

�

�r

(3.25
)

D

n

= �D

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) sin(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�

sin(n�t) 
os(n�) +O

�

1

r

4

��

�

��

+

�

rn sin(n�t) sin(n�) +O

�

1

r

��

�

�r

:

(3.25d)

The basis generators satisfy the following 
ommutation relations:

[A

n

; A

m

℄ =

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26a)

[B

n

; B

m

℄ =

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26b)

[C

n

; C

m

℄ = �

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26
)

[D

n

; D

m

℄ = �

1

2

(n�m)C

n+m

+

1

2

(n+m)C

n�m

; (3.26d)

[A

n

; B

m

℄ = �

1

2

(n�m)D

n+m

�

1

2

(n+m)D

n�m

; (3.26e)

[A

n

; C

m

℄ = �

1

2

(n�m)A

n+m

+

1

2

(n+m)A

n�m

; (3.26f)

[A

n

; D

m

℄ =

1

2

(n�m)B

n+m

�

1

2

(n+m)B

n�m

; (3.26g)

[B

n

; C

m

℄ = �

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.26h)

[B

n

; D

m

℄ =

1

2

(n�m)A

n+m

�

1

2

(n+m)A

n�m

; (3.26i)

[C

n

; D

m

℄ = �

1

2

(n�m)D

n+m

+

1

2

(n+m)D

n�m

; (3.26j)

and so they form an algebra isomorphi
 to a dire
t sum of two Virasoro algebras,

whi
h is just the algebra of 
onformal transformations in two dimensions (apart

from the 
entral 
harge).

The lapse and shift asso
iated to the generators (3.24) are

N = �r +O

�

1

r

�

; (3.27a)

N

�

= O

�

1

r

2

�

; (3.27b)
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N

r

= O

�

1

r

�

; (3.27
)

so that the non-vanishing term in the variation (3.18) is

Z

P

p

�

p

h

~n

l

[�G

ijkl

(ND

k

Æh

ij

� �

k

N Æh

ij

) + 2N

i

ÆP

il

℄; (3.28)

and the well-de�ned Hamiltonian is

H =

Z

S

(NH +N

i

H

i

)

�

Z

P

p

�

p

h

~n

l

f�G

ijkl

[ND

k

h

ij

� �

k

N (h

ij

� h

�

ij

)℄

+ 2N

i

(P

il

� P

�

il

)g:

(3.29)

The only non-vanishing 
harges for a solution like (3.14) are the ones asso-


iated to the generators A

0

=

1

�

�

�t

and B

0

=

�

��

:

J[A

0

℄ =

�

�

; (3.30a)

J[B

0

℄ = �A; (3.30b)

so we �nd again the mass and the angular momentum. But we 
an look for

new 
harges 
oming from solutions di�erent from (3.14) but whi
h belong to

the asymptoti
 
lass (3.23). We 
an generate these kinds of solutions by in-

�nitesimally deforming the ground state by means of a generator (3.25):

g

��

= g

�

��

+ L

��

g

�

��

; (3.31)

thus we �nd the 
entral 
harges

J[A

n

℄ =

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�C

m

g

�

��

; (3.32a)

J[B

n

℄ = �

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�D

m

g

�

��

: (3.32b)

3.1.3 Asymptoti
 symmetries in two-dimensional anti-

de Sitter spa
e with dilaton �eld

In the �rst 
hapter we mentioned the fa
t that a 
lassi
al (i.e. non-dilatoni
)

gravity theory 
annot exist in two dimensions, sin
e the s
alar 
urvature is a

topologi
al invariant and The Hilbert-Einstein a
tion has no dynami
s. It is

ne
essary to introdu
e at least one more degree of freedom into the theory,

e.g. a dilaton �eld. As a 
onsequen
e, the asymptoti
 analysis of su
h a two-

dimensional theory will have to 
onsider the dilaton's asymptoti
 behaviour as

well. In this 
ontext �nds its pla
e the work by Cadoni and Mignemi [19℄, whi
h

we are going to follow in this se
tion.
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We take as ground state the following solution of the equations of motion:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

; (3.33a)

� = �

0

�r; (3.33b)

and as `ex
ited' solutions:

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

)

�1

dr

2

; (3.34a)

� = �

0

�r; (3.34b)

whi
h behave at in�nity as follows:

g

tt

= ��

2

r

2

+O(r

0

); (3.35a)

g

tr

= 0; (3.35b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.35
)

� = �

0

�r: (3.35d)

The asymptoti
 
onditions above lead to a rather poor symmetry group, just as

it happened with 
onditions (3.16) in the three-dimensional 
ase. If one wants

to re
over the isometry group SO(2; 1) at least, one must assume the following

`larger' 
onditions:

g

tt

= ��

2

r

2

+O(r

0

); (3.36a)

g

tr

= O

�

1

r

3

�

; (3.36b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.36
)

� = O(r): (3.36d)

The asymptoti
 symmetry group for 
onditions (3.36) is generated by:

� =

�

"(t) +

1

2�

4

r

2

d

2

"(t)

dt

2

+O

�

1

r

4

��

�

�t

�

�

r

d"(t)

dt

+O

�

1

r

��

�

�r

: (3.37)

Again, to our surprise, the group is in�nite-dimensional and 
oin
ides with the


onformal group in one dimension; it 
ontains SO(2; 1) as subgroup. Fourier

analysis of its generators leads to the following 
ountable basis:

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) +O

�

1

r

4

��

�

�t

+

�

rn sin(n�t) +O

�

1

r

��

�

�r

;

(3.38a)

B

n

= �B

�n

=

�

1

�

(1�

n

2

2�

2

r

2

�

sin(n�t) +O

�

1

r

4

��

�

�t

�

�

rn 
os(n�t) +O

�

1

r

��

�

�r

;

(3.38b)
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the 
ommutation relations are:

[A

n

; A

m

℄ =

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.39a)

[B

n

; B

m

℄ = �

1

2

(n�m)B

n+m

+

1

2

(n+m)B

n�m

; (3.39b)

[A

n

; B

m

℄ = �

1

2

(n�m)A

n+m

+

1

2

(n+m)A

n�m

; (3.39
)

so that the generators form a Virasoro algebra, 
orresponding to the algebra of

the 
onformal group in one dimension (apart from the 
entral 
harge).

Go on to 
onsider, as usual, the variation of the bulk Hamiltonian:

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�) Æh

ij

℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)Æh

ij

N �

k

�

+ 2�

p

h (�

j

N Æ� �N�

j

Æ�)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

�N

l

P

�

Æ�g;

(3.40)

if the 
anoni
al evolution is generated by a ve
tor �eld like (3.37), the lapse and

shift turn out to be:

N = �r +O

�

1

r

�

; (3.41a)

N

r

= O

�

1

r

�

; (3.41b)

and the asymptoti
ally non-vanishing variational term is:

�

Z

P

p

�

p

h

~n

l

[�

p

h (2h

il

h

jk

� h

ij

h

kl

)Æh

ij

N �

k

�

+ 2�

p

h (�

j

N Æ� �N�

j

Æ�) + 2N

i

ÆP

il

℄;

(3.42)

a problem arises at this point: the variation of the dilaton does not vanish

asymptoti
ally, and in prin
iple it is not possible to integrate the surfa
e term

above; only by requiring the dilaton to have the form

� = [1 + Æ�(t)℄O(r); (3.43)

i.e. to be `in�nitesimally near' to unity, 
an we integrate the variational term

above and �nd the term to be added to the Hamiltonian:

J =

Z

P

p

�

p

h

~n

l

f�

p

h (2h

il

h

jk

� h

ij

h

kl

)(h

ij

� h

�

ij

)N �

k

�

+ 2�

p

h [�

j

N(� � �

�

)N�

j

(� � �

�

)℄

+ 2N

i

(P

il

� P

�

il

)g:

(3.44)
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Cal
ulation of the 
harges asso
iated to the generators (3.38) for a solution

like (3.34) gives:

J[A

n

℄ = H[A

n

℄ =

1

2

�

0

�

2


os(n�t); (3.45a)

J[B

n

℄ = H[B

n

℄ =

1

2

�

0

�

2

sin(n�t); (3.45b)

the only non-trivial 
onserved 
harge is the one asso
iated to A

0

=

1

�

�

�t

, 
or-

responding to the mass; besides we obtain an in�nite number of non-
onserved


harges. Their presen
e is related to the integration problems 
on
erning the

variational surfa
e term, whi
h we saw above; or it 
an be related to the fa
t

that Hamiltonian evolution and Lie transport do not 
oin
ide for the generators

of the asymptoti
 symmetries (whi
h was true for Brown and Henneaux's 
ase

instead). Cadoni and Mignemi [20℄ analyse this problem and as a solution they

rede�ne the 
harge asso
iated to the generator � as:

J

0

[�℄

def

=

�

2�

Z

t+

2�

�

t

J[�℄; (3.46)

thus introdu
ing a sort of mean value. By means of this new de�nition we obtain

the 
onserved 
harges:

J

0

[A

0

℄ =

M

�

; (3.47a)

J

0

[A

m

℄ = 0 with m 6= 0; (3.47b)

J

0

[B

n

℄ = 0: (3.47
)

Now we deform the ground state in�nitesimally by means of the genera-

tor ��

�

:

g

��

= g

�

��

+ L

��

g

�

��

; (3.48)

and we �nd �nd the non-trivial 
harges asso
iated to this deformation:

J

0

[A

n

℄ = �

0

n

3

Æ

jnj jmj

for g

��

= g

�

��

+ L

�B

m

g

�

��

: (3.49)

3.1.4 Asymptoti
 symmetries in three-dimensional anti-

de Sitter spa
e with dilaton �eld

The analysis of the asymptoti
 symmetries of a dilaton gravity theory in

three-dimensional anti-de Sitter spa
e allows us to make the simplest untrivial


omparison with the respe
tive non-dilatoni
 theory. The 
omparison is not

trivial be
ause of the spa
e 
onsidered, whi
h is not just 
at spa
e, and is

the simplest be
ause three is the lowest number of dimensions in whi
h su
h

a 
omparison 
an me made (in two dimensions there 
an be no non-dilatoni


gravity theories).

60



The (metri
) ground state we 
onsider is the same as the one of non-dilatoni


theory:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (3.50a)

� = �r; (3.50b)

and the bla
k-hole solutions are:

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (3.51a)

� = �r: (3.51b)

If we look for the stri
test 
lass of asymptoti
 
onditions whi
h 
ontains

solutions like (3.51) and is invariant under the a
tion of the ground state's

isometry group SO(2; 2), we �nd:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.52a)

g

t�

= O

�

1

r

�

; (3.52b)

g

tr

= O

�

1

r

4

�

; (3.52
)

g

��

= r

2

+O

�

1

r

�

; (3.52d)

g

�r

= O

�

1

r

4

�

; (3.52e)

g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.52f)

and, for the dilaton:

� = O(r): (3.52g)

We immediately see that these 
onditions are 
ompletely di�erent from

the (3.23): their gauge parts fall o� faster by one power of 1=r. The asymptoti


symmetries turn out to be di�erent as well:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53a)

A

2

=

�

O

�

1

r

4

��

�

�t

+

�

1 +O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53b)

A

3

=

�

�

�

+O

�

1

r

4

��

�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.53
)

A

4

=

�

t+O

�

1

r

4

��

�

�t

+

�

�+O

�

1

r

4

��

�

��

�

�

r +O

�

1

r

��

�

�r

; (3.53d)
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A

5

=

�

�t

2

+

�

2

�

+

1

�

3

r

2

+O

�

1

r

4

��

�

�t

+

�

2�t�+O

�

1

r

4

��

�

��

�

�

2�tr +O

�

1

r

��

�

�r

;

(3.53e)

A

6

=

�

2t�+O

�

1

r

4

��

�

�t

+

�

�

2

t

2

+ �

2

�

1

�

2

r

2

+O

�

1

r

4

��

�

��

�

�

2�r +O

�

1

r

��

�

�r

;

(3.53f)

these are exa
tly the generators of the group SO(2; 2); their algebra is indeed

given by the 
ommutation rules:

[A

1

; A

2

℄ = 0; (3.54a)

[A

1

; A

3

℄ = A

2

; (3.54b)

[A

1

; A

4

℄ = A

1

; (3.54
)

[A

1

; A

5

℄ = 2A

4

; (3.54d)

[A

1

; A

6

℄ = 2A

3

; (3.54e)

[A

2

; A

3

℄ = A

1

; (3.54f)

[A

2

; A

4

℄ = A

2

; (3.54g)

[A

2

; A

5

℄ = 2A

3

; (3.54h)

[A

2

; A

6

℄ = 2A

4

; (3.54i)

[A

3

; A

4

℄ = 0; (3.54j)

[A

3

; A

5

℄ = A

6

; (3.54k)

[A

3

; A

6

℄ = A

5

; (3.54l)

[A

4

; A

5

℄ = A

5

; (3.54m)

[A

4

; A

6

℄ = A

6

; (3.54n)

[A

5

; A

6

℄ = 0: (3.54o)

Now let us 
onsider the Hamiltonian; its variation is:

ÆH

1

=

Z

S

(A

ij

Æh

ij

+B

ij

P

ij

)

�

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�) Æh

ij

℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)Æh

ij

N �

k

�

+ 2�

p

h (�

j

N Æ� �N�

j

Æ�)

+ (2N

i

P

kl

�N

l

P

ik

)Æh

ik

+ 2N

i

ÆP

il

�N

l

P

�

Æ�g;

(3.55)

just as it happened in the two-dimensional 
ase, we 
an integrate the variation
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only if the dilaton has the following form:

� = [1 + Æ�(t)℄O(r); (3.56)

with this 
ondition, the Hamiltonian additional surfa
e term is:

J =

Z

P

p

�

p

h

~n

l

f�G

ijkl

[N�D

k

h

ij

� �

k

(N�)(h

ij

� h

�

ij

)℄

+ �

p

h (2h

il

h

jk

� h

ij

h

kl

)(h

ij

� h

�

ij

)N �

k

�

+ 2�

p

h [�

j

N(� � �

�

)�N�

j

(� � �

�

)℄

+ 2N

i

(P

il

� P

�

il

)g:

(3.57)

.

For a solution like (3.51) the only non-vanishing 
onserved 
harge is the

mass, asso
iated to the generator �=�t = �A

1

:

J

�

�

�t

�

= H

�

�

�t

�

= 2��

2

=M: (3.58)

The result is not as surprising as in the non-dilatoni
 
ase: the system's

asymptoti
 boundary is just invariant under SO(2; 2), but not under the 
on-

formal group; this is due to the asymptoti
 
onditions (3.52), whi
h are too

stri
t.

One 
ould think that assuming the same 
onditions (3.23) of the non-

dilatoni
 
ase instead of the (3.52) might again result in a larger asymptoti


symmetry group. This idea proves to be wrong as soon as the 
harges asso-


iated to the present generators (3.53) for a deformed-ground-state solution

are 
al
ulated: they diverge; the system thus has in�nite 
harges. This means

that the present asymptoti
 
onditions (3.52) 
ontain physi
ally una

eptable

solutions, a fa
t that will be shown by expli
it 
al
ulation through Brown and

York's formalism. Hen
e, if we extended the present asymptoti
 
onditions

to the (3.23) the situation would be only worse. Instead, we must modify


ondition (3.52g) for the dilaton, so that the new asymptoti
 
onditions are:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.59a)

g

t�

= O

�

1

r

�

; (3.59b)

g

tr

= O

�

1

r

4

�

; (3.59
)

g

��

= r

2

+O

�

1

r

�

; (3.59d)

g

�r

= O

�

1

r

4

�

; (3.59e)

g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.59f)
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� = �r +O

�

1

r

�

; (3.59g)

as a 
onsequen
e of this restri
tion, the asymptoti
 symmetry group shrinks to

the subgroup generated by:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.60a)

A

2

=

�

O

�

1

r

4

��

�

�t

+

�

1 +O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.60b)

A

3

=

�

�

�

+O

�

1

r

4

��

�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

: (3.60
)

3.2 Quasilo
al formalism

We will now apply Brown and York's quasilo
al formalism to the 
al
ulation

of the 
harges asso
iated to the asymptoti
 symmetries in anti-de Sitter spa
e for

the three theories previously analysed, namely the three-dimensional dilatoni


and non-dilatoni
 theories, and the two-dimensional dilatoni
 one.

3.2.1 The three-dimensional non-dilatoni
 
ase

Counterterm 
hoi
e

Before pro
eeding to apply the formulas for the quasilo
al 
harges,

Eqs. (2.60) and (2.61), we must 
hoose an expli
it form for the 
ountert-

erm L

�

, whi
h is needed for the renormalisation of the 
harges. In Se
. 2.3.1

we outlined the main guide-lines for su
h a 
hoi
e; we de
ide to use Balasubra-

manian and Kraus' method in this 
ase, i.e. to 
onstru
t a 
ounterterm from

the intrinsi
 metri
 obje
ts of the boundary. We make su
h a 
hoi
e be
ause

the intrinsi
 method is 
omputationally easier and it should be asymptoti
ally

equivalent to the referen
e-spa
etime one (q.v. Lau [33℄).

The form of the 
ounterterm for three-dimensional anti-de Sitter spa
e has

been univo
ally determined by Balasubramanian and Kraus [5℄ by the require-

ment that the quasilo
al tensor �

ab

should yield non-diverging 
harges:

L

�

def

= 2�

Z

B

p

�
 �: (3.61)

Its variation is:

ÆL

�

= �

Z

B

p

�
 �


ab

Æ


ab

; (3.62)

when
e we obtain the expression for �

�

ab

:

�

�

ab

def

=

ÆL

�

Æ


ab

= ��


ab

; (3.63)
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thus the quasilo
al stress-energy tensor is:

�

ab

def

=

2

p

�


ÆL


l

Æ


ab

=

2

p

�


(�

ab


l

��

�

ab

)

= 2�(�

ab

��


ab

� �


ab

):

(3.64)

Charges

We have already analysed the suitable asymptoti
 
onditions, symmetries,

and generators for three-dimensional anti-de Sitter spa
e in Se
. 3.1.2. The

metri
 indu
ed at in�nity is:

g

tt

= ��

2

r

2

+O(r

0

); (3.65a)

g

t�

= O(r

0

); (3.65b)

g

tr

= O

�

1

r

3

�

; (3.65
)

g

��

= r

2

+O(r

0

); (3.65d)

g

�r

= O

�

1

r

3

�

; (3.65e)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.65f)

and it 
ontains solutions like:

ds

2

= �(�

2

r

2

+ �

2

)dt

2

+ (�

2

r

2

+ �

2

�A

2

�

2

)

�1

dr

2

+ 2�Adt d� + (r

2

�A

2

)d�

2

;

(3.66)

whi
h are 
onsidered as ex
itations of the following ground state:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

+ r

2

d�

2

: (3.67)

The asymptoti
 symmetry group turns out to be the 
onformal group in two

dimensions, whi
h 
ontains the ground-state isometry subgroup SO(2; 2), and

whose generators are:

� =

�

"(t; �) +

1

�

2

r

2

�"(t; �) +O

�

1

r

4

��

�

�t

+

�

!(t; �) +

1

�

2

r

2

�!(t; �) +O

�

1

r

4

��

�

��

+

�

r�(t; �) +O

�

1

r

��

�

�r

;

(3.68a)
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with

�

2

�

�

"(t; �) = �

t

!(t; �); (3.68b)

�

t

"(t; �) = �

�

!(t; �) = ��(t; �); (3.68
)

�"(t; �) = �

1

2�

2

�

t

�(t; �); (3.68d)

�!(t; �) =

1

2

�

�

�(t; �): (3.68e)

These generators 
an be Fourier analysed, and we have the 
ountable basis:

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) 
os(n�) +O

�

1

r

4
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�

�t

�

��

1 +

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

�

℄

�

��

+

�

rn sin(n�t) 
os(n�) +O

�

1

r

��

�

�r

(3.69a)

B

n

= B

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) sin(n�) +O

�

1

r

4

��

�

�t

�

��

1 +

n

2

2�

2

r

2

�


os(n�t) 
os(n�) +O

�

1

r

4

��

�

��

+

�

rn 
os(n�t) sin(n�) +O

�

1

r

��

�

�r

(3.69b)

C

n

= �C

�n
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�

1

�

�

1�

n

2

2�

2

r

2

�

sin(n�t) 
os(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�


os(n�t) sin(n�) +O

�

1

r

4

��

�

��

�

�

rn 
os(n�t) 
os(n�) +O

�

1

r

��

�

�r

(3.69
)

D

n

= �D

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) sin(n�) +O

�

1

r

4

��

�

�t

+

��

1 +

n

2

2�

2

r

2

�

sin(n�t) 
os(n�) +O

�

1

r

4

��

�

��

+

�

rn sin(n�t) sin(n�) +O

�

1

r

��

�

�r

:

(3.69d)

Sin
e these generators satisfy the 
ommutation relations (3.26) (p. 56), they

span a dire
t sum of two 
opies of a Virasoro algebra.

A

ording to what we said in Se
. 2.3.3, if the quasilo
al is to be used

properly, then the generators � must satisfy the 
ondition

L

�

k




ab

��

(a

�

k

b)

r!1

���! 0; (3.70a)
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i.e.

�

a

�

ka

r!1

���! 0; (3.70b)

or the 
ondition

�

ab

�

(a

�

k

b)

r!1

���! 0: (3.71)

Indeed, for a generator like (3.68) we have:

�

ab

�

(a

�

k

b)

= O

�

1

r

4

�

; (3.72)

whi
h is satisfa
tory.

Expli
it 
al
ulation of the 
harges for a solution like (3.66) gives

Q(A

0

)

def

=

Z

P

p

�A

0

ka

~u

b

�

b

a

= �; (3.73a)

Q(B

0

)

def

=

Z

P

p

�B

0

ka

~u

b

�

b

a

= �A (3.73b)

as the only non-vanishing 
harges, i.e. we �nd mass and angular momentum just

like we expe
ted. If we 
al
ulate the 
harges for an in�nitesimal deformation of

the ground state we �nd the untrivial results:

Q(A

n

) =

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�C

m

g

�

��

; (3.74a)

Q(B

n

) = �

1

�

n

3

Æ

jnj jmj

; per g

��

= g

�

��

+ L

�D

m

g

�

��

; (3.74b)

i.e. the 
entral 
harges found in Se
. 3.1.2 by Regge and Teitelboim's pro
edure.

3.2.2 The three-dimensional dilatoni
 
ase

Three-dimensional anti-de Sitter spa
e with a dilaton �eld is the �rst arena

wherein we fa
e the problems dis
ussed in Se
. 2.3.2.

Counterterm

Even in this 
ase we de
ide to 
onstru
t the 
ounterterm L

�

from B's intrinsi


metri
 obje
ts. The presen
e of the dilaton as one of these intrinsi
 obje
ts,

though, allows us to 
onstru
t an almost in�nite variety of 
ounterterms; and

there is not only one expression among them whi
h is univo
ally determined by

requiring �nite 
harges. We de
ide to 
onsider the 
ounterterm whose form is

the simplest:

L

�

def

= 4�

Z

B

p

�
 ��; (3.75)
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it di�ers from the 
orresponding non-dilatoni
 one (3.61) by a fa
tor 2 and by

the presen
e of the dilaton. Its variation is:

ÆL

�

=

Z

B

p

�
 (2���


ab

Æ


ab

+ 4��Æ�); (3.76)

when
e we have:

�

�

ab

def

=

ÆL

�

Æ


ab

= 2��


ab

; (3.77a)

�

�

�

def

=

ÆL

�

Æ�

= 4��; (3.77b)

so that the quasilo
al stress-energy tensor is:

�

ab

= 2(�


l

ab

��

�

ab

)

= 2�[�(�

ab

��


ab

) + n

�

r

�

� � 2��


ab

℄:

(3.78a)

The formula for the 
harge is, as from Se
. 2.3.2,

Q

P

t

(�)

def

=

Z

P

t

p

� �

ka

~u

b

�

ab

: (3.78b)

Charges

As in Se
. 3.1.4, the ground state is:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

+ 1)

�1

dr

2

+ r

2

d�

2

; (3.79a)

� = �r; (3.79b)

and the ex
ited states are:

ds

2

= �

�

�

2

r

2

�

�

2

r

�

dt

2

+

�

�

2

r

2

�

�

2

r

�

�1

dr

2

+ r

2

d�

2

; (3.80a)

� = �r; (3.80b)

these are 
ontained in the following asymptoti
 
onditions:

g

tt

= ��

2

r

2

+O

�

1

r

�

; (3.81a)

g

t�

= O

�

1

r

�

; (3.81b)

g

tr

= O

�

1

r

4

�

; (3.81
)

g

��

= r

2

+O

�

1

r

�

; (3.81d)

g

�r

= O

�

1

r

4

�

; (3.81e)
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g

rr

=

1

�

2

r

2

+O

�

1

r

5

�

; (3.81f)

� = O(r); (3.81g)

whose asymptoti
 symmetry group is just SO(2; 2), generated by:

A

1

=

�

1

�

+O

�

1

r

4

��

�

�t

+

�

O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.82a)

A

2
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�

O

�

1

r

4
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�

�t

+

�

1 +O

�

1

r

4

��

�

��

+

�

O

�

1
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��

�

�r

; (3.82b)

A

3
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+O

�

1

r

4
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�

�t

+

�

�t+O

�

1

r

4

��

�

��

+

�

O

�

1

r

��

�

�r

; (3.82
)

A

4
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�
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r

4

��
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+

�

�+O

�

1

r

4

��

�

��

�

�

r +O

�

1

r

��

�

�r

; (3.82d)

A

5

=

�

�t

2

+

�

2

�

+

1

�

3

r

2

+O

�

1

r

4

��

�

�t

+

�

2�t�+O

�

1

r

4

��

�

��

�

�

2�tr +O

�

1

r

��

�

�r

;

(3.82e)

A

6
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�

2t�+O

�

1

r

4

��

�

�t

+

�

�

2

t

2

+ �

2

�

1

�

2
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2

+O

�

1

r

4

��

�

��

�

�

2�r +O

�

1

r

��

�

�r

;

(3.82f)

whi
h satisfy the 
ommutation rules (3.54) (p. 62).

In Se
. 3.1.4 we also stated that the asymptoti
 
onditions and symmetries

above yield diverging 
harges; now that statement will be demonstrated. Let

us express the (3.81) as:

g

tt

= ��

2

r

2

+

'

tt

�r

+O

�

1

r

2

�

; (3.83a)

g

t�

=

'

t�

�r

+O

�

1

r

2

�

; (3.83b)

g

tr

=

'

tr

�

4

r

4

+O

�

1

r

5

�

; (3.83
)

g

��

= r

2

+

'

��

�r

+O

�

1

r

2

�

; (3.83d)

g

�r

=

'
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�

4

r

4

+O

�
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r

5

�

; (3.83e)

g

rr

=

1

�

2

r

2

+
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rr

�
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r

5

+O

�

1

r

6

�

; (3.83f)

� = �r + '

�

1

�r +

'

�

2

�r

+O

�

1

r

2

�

; (3.83g)
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where the improper gauge part is now visible; using the expressions above into

Eqs. (3.78) to 
al
ulate the 
harge asso
iated to the generator �=�t, we obtain:

Q

P

t

�

�

�t

�

= 4��r

Z

2�

0

'

�

2

(t; �) d� +O(r

0

): (3.84)

It is now evident that the 
harge diverges as r ! 1, and that this is due to

the asymptoti
 
ondition � = O(r). The divergen
e remains hidden when we


al
ulate the 
harge for a bla
k-hole solution (3.80), be
ause '

�

2

(t; �) = 0 for

su
h a solution. In order to have �nite 
harges we must require the dilaton to

behave as

� = �r + '

�

1

�r +O

�

1

r

2

�

; (3.85)

this requirement redu
es the asymptoti
 symmetry group to that spanned

by fA

1

; A

2

; A

3

g: this is just the `symmetry breaking' phenomenon we have

already spoken about. While in two dimensions this phenomenon leads to

non-
onserved 
harges (as we saw by Regge and Teitelboim's formalism and

as we shall see by the quasilo
al formalism), so that one 
an keep the larger

symmetry group, in three dimensions the phenomenon leads to diverging


harges instead, so that one must redu
e the group.

3.2.3 The two-dimensional dilatoni
 
ase

The 
al
ulation of the 
harges through Brown and York's method, in the

two-dimensional 
ase, is the easiest 
omputationally yet the subtlest and the

most ambiguous at the same time.

The 
ounterterm question

By detailed examination of 
harge 
al
ulation in two-dimensional dilatoni


anti-de Sitter spa
e, all 
on
eptual problems 
on
erning the 
ounterterm are

brought to light. We shall 
al
ulate the 
harges both through an intrinsi
 
oun-

terterm and through a ba
kground 
ounterterm. We shall see that a 
ounterterm

�a la Balasubramanian and Kraus 
annot be univo
ally determined by simply

demanding renormalised 
harges. We shall also see that Brown and York's

formula for the 
harges is not equivalent to the Regge-Teitelboim one.

Intrinsi
 
ounterterm

We use an intrinsi
 
ounterterm whi
h is the sum of two pie
es:

1. the �rst is the analogue of the one used in the three-dimensional dilatoni



ase:

L

�

1

def

= 2C

1

�

Z

B

p

�
 ��; (3.86)
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2. for the se
ond, we draw inspiration from the dilaton kineti
 term in the

Brans-Di
ke Lagrangian:

L

�

2

def

= C

2

�

Z

B

p

�


1

��

(��)

2

; (3.87)

so the total intrinsi
 
ounterterm is:

L

�

def

= �

Z

B

p

�


�

2C

1

�� + C

2

1

��

(��)

2

�

= L

�

1

+ L

�

2

: (3.88)

We shall see that the �rst addendum takes part in 
harge renormalisation, while

the other appears in the �nite part of the 
harges. The 
onstants C

1

and C

2

are undetermined by now; a

ording to Balasubramanian and Kraus we should

be able to �x them by requiring renormalised 
harges; we shall see that this is

not the 
ase.

The variation of the 
ounterterm is:

ÆL

�

= �

Z

B

p

�


��

C

1

��


ab

+ C

2

1

2��

(


ab





d

� 2


a





bd

)�




��

d

�

�

Æ


ab

+

�

2C

1

�� C

2

1

��

2





d

�




��

d

�

� 2C

2

�




�

p

�


1

��





d

�

d

�

��

Æ�

�

;

(3.89)

and we �nd the expression for the quasilo
al stress-energy tensor through

Eq. (2.66):

�

ab

= 2�[�(�

ab

��


ab

) + n

�

r

�

� � C

1

��


ab

� C

2

1

2��

(


ab





d

� 2


a





bd

)�




��

d

�℄:

(3.90)

The 
harge asso
iated to the generator � is, as usual,

Q

P

(�)

def

=

Z

P

t

p

� �

ka

~u

b

�

ab

: (3.91)

Charges We already saw in Se
. 3.1.3 that the asymptoti
 
onditions for two-

dimensional anti-de Sitter spa
e are:

g

tt

= ��

2

r

2

+O(r

0

); (3.92a)

g

tr

= O

�

1

r

3

�

; (3.92b)

g

rr

=

1

�

2

r

2

+O

�

1

r

4

�

; (3.92
)

� = O(r); (3.92d)

71



these are invariant under the 
onformal group in one dimension, whose genera-

tors are given by:

� =

�

"(t) +

1

2�

4

r

2

d

2

"(t)

dt

2

+O

�

1

r

4

��

�

�t

+

�

r"(t) +O

�

1

r

��

�

�r

; (3.93)

or, by means of a 
ountable basis,

A

n

= A

�n

=

�

1

�

�

1�

n

2

2�

2

r

2

�


os(n�t) +O

�

1

r

4

��

�

�t

+

�

rn sin(n�t) +O

�

1

r

��

�

�r

;

(3.94a)

B

n

= �B

�n

=

�

1

�

(1�

n

2

2�

2

r

2

�

sin(n�t) +O

�

1

r

4

��

�

�t

+

�

rn 
os(n�t) +O

�

1

r

��

�

�r

:

(3.94b)

The generators form a Virasoro algebra and satisfy the 
ommutation rela-

tions (3.39) (p. 59).

In order to analyse in detail the 
al
ulations to follow, we write the asymp-

toti
 
onditions (3.92) as:

g

tt

= ��

2

r

2

+ '

tt

+O

�

1

r

�

; (3.95a)

g

tr

=

'

tr

�

3

r

3

+O

�

1

r

4

�

; (3.95b)

g

rr

=

1

�

2

r

2

+

'

rr

�

4

r

4

+O

�

1

r

5

�

; (3.95
)

� = �r� +

'

��

�r

+O

�

1

r

2

�

; (3.95d)

where the O(1=r

n

) terms are just the proper gauge parts. In the notation above,

the ground state 
orresponds to

'

tt

= '

tr

= '

rr

= '

��

= 0; (3.96a)

� = 1; (3.96b)

while the 
onditions

'

tt

= '

rr

=

2M

�

; (3.97a)

'

tr

= '

��

= 0; (3.97b)

� = 1 (3.97
)


orrespond to a bla
k hole having mass M .
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Firstly, we want to examine the asymptoti
 behaviour of the term

p

� �

ka

~u

b

� �

kt

~u

t

(3.98)

whi
h multiplies the quasilo
al tensor in Eq. (3.91). We �nd:

�

kt

~u

t

� �

�




�

t

~u

t

=

"

�r

+O

�

1

r

3

�

; (3.99)

it is 
lear that, if we want non-diverging, yet non-vanishing 
harges, the quasilo-


al tensor must behave exa
tly as O(r); the analysis of his asymptoti
 behaviour

gives:

�

tt

= 2�[(C

1

� 1)�

4

�℄ � r

3

+ �

�

�'

rr

� 2(C

1

� 1)�'

tt

+ 2(C

1

+ 1)'

��

+ C

2

_�

2

�

2

�

�

� r;

(3.100)

in this expression we have a term whi
h behaves as O(r), whi
h is just what we

wanted, but also a term

2�(C

1

� 1)�

4

�r

3

� O(r

3

) (3.101)

whi
h yields a divergen
e. We get rid of it by �xing the 
onstant C

1

to the

suitable value

C

1

= 1: (3.102)

We have thus �xed one of the 
ounterterm's 
onstants; the expression for the

quasilo
al tensor be
omes:

�

tt

= �

�

�'

rr

+ 4'

��

+ C

2

_�

2

�

2

�

�

r; (3.103)

Now, multiplying Eq. (3.99) by Eq. (3.100) with C

1

= 1, we �nd the expres-

sion for the 
harge (integration over P 
orresponds to evaluation at P , sin
e P

is just a point in this 
ase):

Q(�) = ��"

�

�'

rr

+ 4'

��

+ C

2

_�

2

�

2

�

�

:

(3.104)

Cal
ulation of the 
harge asso
iated to the Killing ve
tor �eld �=�t (Eq. (3.93)

with "(t) � 1) for a bla
k-hole solution with mass M (Eqs. (3.97)), yields:

Q

�

�

�t

�

= 2� �M (3.105)

(sin
e � =

1

2

for the two-dimensional Lagrangian, q.v. Se
. 1.3.2).

Thus Eq. (3.104) gives the right value for the bla
k-hole mass, independently

of the value of the 
onstant C

2

. Note that we do not have other reasonable
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requirements to impose on the expression of the 
harge, and so the 
onstant C

2

remains hopelessly undetermined; Balasubramanian and Kraus' pres
ription is

ambiguous in this 
ase.

We want to 
he
k the values of the 
entral 
harges. Let us take the in�nites-

imal generator:

�� =

�

�!(t) +

1

2�

4

r

2

��!(t) +O

�

1

r

4

��

�

�t

+

�

r� _!(t) +O

�

1

r

��

�

�r

; (3.106)

and deform the ground state by: g

�

��

+ L

��

g

�

��

and � + L

��

�; we �nd that this

in�nitesimally deformed state is given by Eqs. (3.95) with:

'

tt

= �

�

...

!

�

2

; (3.107a)

'

tr

= '

rr

= '

��

= 0; (3.107b)

� = 1� � _!: (3.107
)

Substitution in Eq. (3.104) of the Equations above gives the 
entral 
harge

asso
iated to the generator �; at �rst order in �:

Q(�) = 0 +O(�

2

): (3.108)

This result is quite disturbing: we do not �nd Cadoni and Mignemi's result,

Eq. (3.45). A dis
ussion about this in
ongruen
e is deferred to the next se
tion

and to the last 
hapter.

Ba
kground 
ounterterm

The main diÆ
ulty in 
al
ulating a ba
kground 
ounterterm 
onsists in em-

bedding isometri
ally and, in this 
ase, isodilatoni
ally the hypersurfa
e B in

the referen
e spa
etime.

In the present 
ase the hypersurfa
e B is a unidimensional manifold (i.e. a

line) given by the equation r = 
onst., and its intrinsi
 metri
 and dilaton are

given by:




tt

= ��

2

r

2

+ '

tt

(t) +O

�

1

r

�

; (3.109a)

�j

B

= �r�+

'

��

�r

+O

�

1

r

2

�

; (3.109b)

the ba
kground spa
etime is de�ned by:

ds

2

= ��

2

r

2

dt

2

+ (�

2

r

2

)

�1

dr

2

; (3.110a)

� = �r; (3.110b)

and in this 
oordinate system the metri
 and the dilaton indu
ed on the bound-

ary r = 
onst. are:




tt

= ��

2

r

2

; (3.111a)

�j

B

= �r; (3.111b)
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so they do not 
oin
ide with Eqs. (3.109). We must �nd | if it is possible

| a new 
oordinate system for the referen
e spa
etime so that the boundary

metri
 and dilaton 
oin
ide, asymptoti
ally at least, with the ones given by

Eqs. (3.109).

Su
h a 
oordinate system exists, and is obtained through the transformation:

t 7�! �(t) +

�(t)

�

2

r

2

; (3.112a)

r 7�! r�(t) +

'

��

(t)

�

2

r

; (3.112b)

where the fun
tions �(t) and �(t) are de�ned by:

� = &

Z

dt �

�1

; (3.112
)

� = &

Z

dt

�

_�

2

2�

2

�

3

�

'

tt

2�

�

'

��

�

2

�

; (3.112d)

with & = �1.

The line element and the dilaton (3.110) assume thus the new forms:

ds

2

=

�

��

2

r

2

+ '

tt

+O

�

1

r

2

��

dt

2

+ 2

�

�'

tr

�r

+O

�

1

r

3

��

dt dr

+

�

1

�

2

r

2

+

�'

rr

�

4

r

4

+O

�

1

r

5

��

dr

2

;

(3.113a)

� = �r�+

'

��

�r

; (3.113b)

where

�'

rr

def

= �4�

2

�

2

�

2

� 4

'

��

�

; (3.113
)

�'

tr

def

= 2&��� +

_�

��

; (3.113d)

in this new 
oordinate system, the metri
 and dilaton indu
ed on the hypersur-

fa
e r = 
onst. have expressions whi
h asymptoti
ally 
oin
ide with Eqs. (3.109)

(to be pre
ise, their di�eren
es a�e
t the proper gauge parts only):




tt

= ��

2

r

2

+ '

tt

(t) +O

�

1

r

2

�

; (3.114a)

�j

B

= �r�+

'

��

�r

: (3.114b)

From the de�nition

L

�

def

=

Z

B

(

~

NE

�

�

~

N

A

J

�

A

); (3.115)
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we obtain, through simple 
al
ulations:

�

�

tt

= �

�

��

4

r

3

�+ �

2

r

�

�'

tt

� '

��

�

_�

2

2�

2

�

��

+O(r

0

); (3.116)

hen
e the full quasilo
al tensor is given by:

�

tt

= �

�

�'

rr

+ 4'

��

+

_�

2

�

2

�

�

r: (3.117)

Charges Comparison with the quasilo
al tensor 
onstru
ted with the intrin-

si
 
ounterterm shows that the latter 
oin
ides with the present, ba
kground

one when C

2

= 1. Sin
e the 
onstant C

2

did not appear in the main results


on
erning the 
harges that we obtained through the use of the intrinsi
 
oun-

terterm, we 
an 
on
lude that an analysis of the 
harges through the present


ounterterm would just lead to the same results. So we 
annot �nd Cadoni and

Mignemi's result for the 
entral 
harge in this 
ase either. The only explana-

tion for this in
ongruen
e is that Brown and York's approa
h to 
harge analysis

is not equivalent to Regge and Teitelboim's. In parti
ular, the surfa
e terms

asso
iated with these two approa
hes, Eqs. (2.35) and (2.36), are not equivalent.

3.3 Central 
harges and statisti
al entropy

3.3.1 Central 
harge

The fa
t that a non-dilatoni
 gravity theory in three-dimensional anti-de Sit-

ter spa
e possesses an in�nite-dimensional (asymptoti
) symmetry group with

asso
iated 
harges holds many interesting 
onsequen
es for the statisti
al ther-

modynami
s of the theory.

The algebra of the asymptoti
 symmetry 
anoni
al generators usually yields

a representation of the Lie algebra of the 
orresponding ve
tor �elds. This

representation is, in general, a proje
tive one:

fH[�℄;H[�℄g = H[ [�; �℄ ℄ +K[�; �℄; (3.118)

in many 
ases, however, one has K[�; �℄ = 0 and Eq. (3.118) is just an isomor-

phism:

fH[�℄;H[�℄g = H[ [�; �℄ ℄: (3.119)

The fun
tional K[�; �℄ is 
alled `
entral 
harge'.

Eq. (3.119) does hold in the 
ase of 
anoni
al gravity theory in 
at spa
e,

but does not in the 
ase of anti-de Sitter spa
e, for whi
h we need the more

general proje
tive representation. The 
al
ulation of the expli
it value of the


entral 
harge has been studied by Brown and Henneaux [14℄.

Starting from Eq. (3.118) one �rst notes that, for solutions of the equations

of motion, it be
omes:

fJ[�℄; J[�℄g = J[ [�; �℄ ℄ +K[�; �℄; (3.120)
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moreover, the Dira
 bra
ket of two 
anoni
al generators fJ[�℄; J[�℄g is given by

the variation of the 
harge asso
iated to the generator � on the surfa
e deformed

by �:

fJ[�℄; J[�℄g � Æ

�

J[�℄; (3.121)

hen
e Eq. (3.120) 
an be rewritten as:

Æ

�

J[�℄ = J[ [�; �℄ ℄ +K[�; �℄; (3.122)

and when evaluated on the ground state, for whi
h J[�℄ = 0, it redu
es to:

Æ

�

J[�℄ = K[�; �℄: (3.123)

Therefore we have that the 
harges evaluated in the pre
eding se
tions are just

the 
entral 
harges of the proje
tive representation of the asymptoti
 symmetry

generators' algebra. We have seen that in the 
ase of three-dimensional anti-

de Sitter spa
e without dilaton and two-dimensional anti-de Sitter spa
e with

dilaton these algebras are in�nite-dimensional.

The three-dimensional 
ase

Using a new basis for the algebra of generators fA

n

; B

n

; C

n

; D

n

g (Eq. (3.25)):

L

n

def

=

i�

2

A

n

+

i�

2

B

n

�

1

2

C

n

+

1

2

D

n

�

1

�

; (3.124a)

K

n

def

=

i�

2

A

n

�

i�

2

B

n

�

1

2

C

n

�

1

2

D

n

�

1

�

; (3.124b)

we obtain the following 
ommutation rules for the 
orresponding 
anoni
al gen-

erators:

fJ[L

n

℄; J[L

m

℄g = (n�m)J[L

(n+m)

℄ +




12

(n

3

� n)Æ

n;�m

; (3.125a)

fJ[K

n

℄; J[K

m

℄g = (n�m)J[K

(n+m)

℄ +




12

(n

3

� n)Æ

n;�m

; (3.125b)

fJ[L

n

℄; J[K

m

℄g = 0; (3.125
)

with 
 �

3

2�

. The fundamental result is that the algebra of the 
anoni
al asymp-

toti
 symmetry generators in three-dimensional anti-de Sitter spa
e is a dire
t

sum of two Virasoro algebras with 
entral 
harge 
 �

3

2�

. This algebra 
har-

a
terizes a 
onformal �eld theory in two dimensions, hen
e gravity theory in

three-dimensional anti-de Sitter spa
e is dual to a 
onformal �eld theory in two

dimensions with 
entral 
harge 
 �

3

2�

.

The two-dimensional 
ase

The asymptoti
 symmetry group in two-dimensional anti-de Sitter spa
e,

instead, is generated by fA

n

; B

n

g, Eq. (3.38), and, by a 
hange of basis:

L

n

def

= iA

n

�B

n

� 1; (3.126)
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we have the following expressions for the 
ommutation rules of the 
orresponding


anoni
al generators:

fJ[L

n

℄; J[L

m

℄g = (n�m)J[L

(n+m)

℄ +




12

(n

3

� n)Æ

n;�m

; (3.127)

with 
 � 24, as 
al
ulated by Cadoni and Mignemi [19℄. Hen
e the algebra of

the 
anoni
al asymptoti
 symmetry generators in two-dimensional anti-de Sit-

ter spa
e is a Virasoro algebra with 
entral 
harge 
 � 24. This algebra 
har-

a
terizes a 
onformal �eld theory in one dimension, so that gravity theory in

two-dimensional anti-de Sitter spa
e is dual to a 
onformal �eld theory in one

dimension with 
entral 
harge 
 � 24.

2

3.3.2 Statisti
al entropy

The 
on
lusions in the pre
eding se
tion imply that a bla
k-hole solution in

three- or two-dimensional anti-de Sitter spa
e (without dilaton and with dila-

ton, respe
tively) 
an be 
onsidered as a state (an ex
ited one) of a 
onformal

dual theory. From this point of view, the entropy of a bla
k hole having massM

(and angular momentum J in three dimensions) 
an be statisti
ally evaluated

by 
ounting the 
orresponding mi
rostates. As it has been shown by Stro-

minger [42℄, when the number of the states tends to in�nity the entropy in a


onformal �eld theory is given by Cardy's formula [22℄

S = 2�

r


 l

L

0

6

+ 2�

r


 l

K

0

6

(3.128)

in two dimensions, or

S = 2�

r


 l

L

0

6

(3.129)

in one dimension, where l

L

0

(l

K

0

) is the eigenvalue of the generator L

0

(K

0

), and

the formula holds for high values of mass and angular momentum.

In the three-dimensional 
ase we have:

S = �

r

M

2�

2

+

J

2�

+ �

r

M

2�

2

�

J

2�

; (3.130)

and in the two-dimensional 
ase:

S = 4�

r

M

�

: (3.131)

The �rst value agrees with the thermodynami
 one, as found by Bekenstein and

Hawking, and this agreement supports the interpretation of three-dimensional

gravity theory as a two-dimensional 
onformal �eld theory. The se
ond value,

2

Note added in translation: See Note 3
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instead, does not agree with the thermodynami
 one by a fa
tor

p

2. A possible

explanation for this dis
repan
y may 
ome from the fa
t that we 
onsidered only

one of the two dis
onne
ted pie
es of the two-dimensional anti-de Sitter spa
e's

boundary | we were for
ed to do that by the dilaton's presen
e. Another

possible explanation is that Hamiltonian and Lie evolution do not 
oin
ide in

the two-dimensional theory, as it happens in the three-dimensional one instead.

3

3

Note added in translation: Cadoni, Carta, Klemm, and Mignemi [AdS

2

Gravity as a

Conformally Invariant Me
hani
al System, preprint hep-th/0009185 (2000)℄ have re
ently

shown that two-dimensional anti-de Sitter spa
e is really dual to a 
onformally invariant

theory that 
an be des
ribed in terms of a de Alfaro-Fubini-Furlan model 
oupled to an

external sour
e with 
onformal dimension two, or equivalently in terms of a me
hani
al system

with anholonomi
 
onstraints. They have found perfe
t agreement between statisti
al and

thermodynami
 entropy; the dis
repan
y above vanishes thanks to an entropy 
ontribution

whi
h des
ribes the entanglement of states.
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Chapter 4

Final remarks and


on
lusions

The main results of the present work 
an be grouped as follows:

1. derivation and dis
ussion of the asymptoti
 symmetries of three-

dimensional anti-de Sitter spa
e for a Ja
kiw-Teitelboim dilaton gravity

theory;

2. appli
ation of Brown and York's quasilo
al formalism to the 
al
ulation

of the 
harges asso
iated to asymptoti
 symmetries in two and three di-

mensions;

3. 
omparative dis
ussion, in the 
ontext of the asymptoti
 symmetries, of

the Hamiltonian surfa
e terms whi
h have re
ently appeared in the liter-

ature.

4.1 Asymptoti
 symmetries in three-dimensional

anti-de Sitter spa
e

Ja
kiw-Teitelboim dilaton gravity theory in three-dimensional anti-de Sitter

spa
e has proved to be very di�erent from the non-dilatoni
 one in the 
ontext

of the asymptoti
 symmetries. The presen
e of a dilaton �eld has three main


onsequen
es.

Firstly, it introdu
es a dynami
al degree of freedom into the theory, that

would have none otherwise.

Se
ondly, the Ja
kiw-Teitelboim bla
k-hole solution is very di�erent from

the Ba~nados-Teitelboim-Zanelli one: the se
ond is topologi
al be
ause the s
alar


urvature is everywhere 
onstant (q.v. Se
. 1.3.2), whereas the �rst is not be-


ause the 
urvature is not 
onstant; hen
e the se
ond has got a simple 
ausal

singularity, whereas the �rst has got a polynomial one. These topologi
al and
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ausal di�eren
es manifest themselves as di�erent asymptoti
 
onditions of the

two metri
s: the proper gauge parts in the dilaton theory fall o� faster than

in the non-dilatoni
 theory by one power of 1=r; as a 
onsequen
e, the asymp-

toti
 group is smaller and �nite-dimensional: it is just the Spe
ial Orthogonal

group SO(2; 2). All this yields the 
onje
ture that the possibility of an in�nite-

dimensional extension of the symmetries should depend upon one, or the union

of some, of the following three points: the absen
e of dynami
al degrees of

freedom; the presen
e of topologi
al solutions; the absen
e of polynomial singu-

larities.

Thirdly, the asymptoti
 
ondition for the dilaton yields diverging 
harges,

so that it must be modi�ed and this leads to the breaking of the symmetries

and to further redu
tion of the SO(2; 2) group.

Symmetry breaking and dilaton

We saw that the symmetry breaking phenomenon due to the presen
e of a

(non-
onstant) dilaton �eld appears in the two-dimensional 
ase as well. This

fa
t shows up 
learly in the expression for the 
harge asso
iated to the genera-

tor �

�

for a Ja
kiw-Teitelboim-like theory,

�[Q

P

t

00

(�)�Q

P

t

0

(�)℄ = (4.1)

Z

t

00

t

0

p

�
 [(�

�


l

��

�

�

)�

a

�

a

� � �

a




a�

n

�

T

��

℄; (4.2)

and in the equation for the quasilo
al tensor,

�

b

�

ab

= (�

�


l

��

�

�

)�

b

�


ab

� 


b

�

n

�

T

��

; (4.3)

where sour
e terms appear whose origin is manifestly dilatoni
; these additional

sour
e terms for
e the imposition of additional 
onstraints on the symmetry

generators, that are redu
ed in number this way. If one disregards these addi-

tional 
onstraints, the dilatoni
 sour
e terms lead to non-
onserved 
harges (as

is the 
ase for two-dimensional anti-de Sitter spa
e) or, worst, diverging 
harges

(as is the 
ase for three-dimensional anti-de Sitter spa
e); in the latter 
ase one


annot a
tually disregard the additional 
onstraints, and the breaking of the

symmetries is ines
apable.

4.2 Quasilo
al formalism and asymptoti
 sym-

metries

Applying Brown and York's formalism to the 
al
ulation of the asymptoti
-

symmetry-asso
iated 
harges, we have obtained results whi
h do not agree with

those 
al
ulated by Regge and Teitelboim's pres
ription in the two-dimensional


ase (Se
. 3.1.3 and Se
. 3.2.3): whereas the Regge-Teitelboim pro
edure yields

non-vanishing (non-
onserved) 
entral 
harges, the quasilo
al formalism yields

vanishing 
harges. There are two possible explanations for this dis
repan
y.
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The �rst is that the Regge-Teitelboim Hamiltonian surfa
e term,

J

RT

[�℄

def
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�
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l
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(4.4)

with �

�

= Nu

�

+ N

�

, is not equivalent to Brown and York's formula for the


harge, whi
h is just Creighton and Mann's Hamiltonian surfa
e term:

Q(�)

def

=

Z

P

p

� �

a

~u

b

�

ab

� Q(�) �

Z

P

(

~

NE �

~

N

A
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); (4.5a)

with

E = 2

p

� ~u

a

~u

b

�

ab

= 2

p

�

�

�n

�
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�

� + �k

�

�E

�

; (4.5b)

J

A

= 2

p

� �

Aa

~u

b

�

ab

= 2

p

� �

Ai

n

j

P

ij

� J

�

A

; (4.5
)

and �

a

=

~

N ~u

a

+

~

N

a

. These two surfa
e terms may 
ome from Lagrangians with

di�erent boundary 
onditions, i.e. di�erent boundary terms.

1

The se
ond explanation is that the pro
edure, used in the present work, of

substituting the generator � with its proje
tion onto the boundary, �

ka

� 


a

�

�

�

,

in the formula for the 
harge is in
onsistent. It is very likely for this explanation

to be right: it is obvious that a proje
tion implies some loss of information; but

we should like to stress the fa
t that we have been for
ed to use su
h a pro
edure,

due to a la
k of generality in Brown and York's formalism and in Creighton and

Mann's surfa
e term.

The problem is that formula (4.5) requires the generator �

�

to lie on the

boundary B, as is shown by the expression �

a

=

~

N ~u

a

+

~

N

a

(from the point of

view of the quasilo
al approa
h, this derives from the requirement that �

�

be

a isometry of the boundary; from the point of view of Creighton and Mann's

approa
h, this derives from the requirement that �

�

make the boundary evolve

tangentially to itself). But an asymptoti
 symmetry generator is not, in general,

tangential to the boundary; hen
e the need for its proje
tion.

An alternative solution to this problem 
ould be the 
hoi
e of a suitable

boundary that should 
ontain the orbits of the generator; however, this solution

would have two drawba
ks.

1

Note added in translation: Re
ent 
al
ulations seem to show that the Creighton-Mann

Hamiltonian surfa
e term should 
orrespond to the Regge-Teitelboim one with an additional

term proportional to the tra
e of the extrinsi
 
urvature of B,

R

P

p

h

~

Nf�.
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The �rst drawba
k is that one should give up a 
ertain 
omputational fa
ility,

sin
e a boundary of the form x

�

= 
onst. would not be suitable in general;

moreover one should 
hoose a di�erent boundary for every di�erent generator.

The se
ond drawba
k is mu
h more fundamental: it is not possible to �nd

su
h a boundary| whi
h has to be timelike | for all kinds of generators. An ex-

ample may help in 
larifying this point. Consider three-dimensional Minkowski

spa
e M

3

with a 
ylindri
al 
oordinate system (t; r; �), and 
onsider the follow-

ing symmetry generators: �=�t, �=��, 2 �=�t + �=�r, and �=�r. In order to


al
ulate the 
harges asso
iated with the �rst two generators, one 
an use the

boundary de�ned by r = 
onst., whi
h 
ontains the orbits of both; in order to


al
ulate the 
harge asso
iated with the third, the boundary above is no more

suitable for it does not 
ontain the orbits, and one must resort to a boundary

de�ned by t � 2r = 
onst. (slightly less easy 
omputationally). But, for the

fourth generator, �=�r, no timelike boundary at all

2

exists that 
an 
ontain its

orbits. Thus Brown and York, and Creighton and Mann's methods are limited

to 
ertain kinds of generators only.

Another diÆ
ulty is 
losely related to the point dis
ussed above, and 
on-


erns the relationship between boundary- and bulk-symmetries in the limit

where the boundary is pushed to in�nity. An example may help in explaining

this point as well. Consider the manifold given by an in�nitely high 
ylindri
al

portion of the above-
onsidered Minkowski spa
e, delimited by the bases t =

�1, t = +1, and by the lateral surfa
e r = 
onst. This manifold is lo
ally

invariant under the full three-dimensional Poin
ar�e group, yet this group is not

admitted as a group of global symmetries, for evident reasons (e.g. a spatial

translation would not map the manifold into itself); indeed the only global

symmetries are spatial rotations and temporal translations, generated by �=��

and �=�t respe
tively. The boundary does naturally re
e
t the group of the

manifold's global symmetries, i.e. it is invariant under rotations and tempo-

ral translations. But, as soon as the lateral boundary is pushed to in�nity, the

manifold (the bulk) suddenly a
quires the full Poin
ar�e group as group of global

symmetries | just be
ause it has be
ome Minkowski spa
e M

3

|, whereas the

boundary, that in the limit pro
ess has just two symmetries for every �nite value

of r, eventually still possesses just those two initial symmetries. This way we are

fa
ing the paradox of a surfa
e that does not possess all the symmetries of the

bulk. The paradox 
learly arises in the limit pro
ess: 
onsidering a boundary at

�nite and then push it to in�nity is not the same as having a boundary `already'

at in�nity.

This question is very important in the 
ontext of the asymptoti
 symme-

tries, where the fundamental prin
iple is the fa
t that the asymptoti
 boundary

possesses all the bulk symmetries (and more).

Thus the quasilo
al formalism is not 
ompletely suitable for dealing with the

asymptoti
 symmetries and 
harges, for it should be applied in two su

essive

steps: (1) study the boundary's symmetries at �nite, then (2) push the boundary

to in�nity and 
al
ulate the 
harges there; but we have just seen that we 
annot

2

Whi
h satis�es some basi
 requirements, like e.g. having an inside and an outside.
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�nd all asymptoti
 symmetries this way. This also relates to what we said in

Se
. 2.1.1 about de�ning the metri
 indu
ed at in�nity by limit or by series

expansion.

4.3 Di�erent Hamiltonian surfa
e terms

In the present work we have used two Hamiltonian surfa
e terms re
ently

presented in the literature, Eqs. (4.4) and (4.5), to operate with asymptoti


symmetries. The 
on
lusions about the (inadequa
y of) the latter have already

been drawn in the previous se
tion.

The Regge-Teitelboim surfa
e term does not su�er the limitations of the

Creighton-Mann one; this is shown by the equation �

�

= Nu

�

+N

�

, whi
h does

not require the generator � to be tangent to any boundary. This freedom allows


omputational easiness and appli
ability to all kinds of generators. The only

drawba
k of the Regge-Teitelboim pro
edure is the fa
t that it is not always

possible to integrate the variation so as to obtain a �nite expression for the

surfa
e term, as we saw e.g. during the 
al
ulations for the two- and three-

dimensional dilatoni
 
ases.

A Hamiltonian surfa
e term re
ently proposed by Hawking and Hunter,

Eq. (1.27), seems not to su�er from the latter drawba
k, while retaining the


exibility of the Regge-Teitelboim term. Its form has only been given for non-

dilatoni
 gravity theories at the moment, though.

3

Anyway, one should note that all Hamiltonian surfa
e terms do in prin
iple

share a 
ommon drawba
k, namely the fa
t that they are `Hamiltonian'; by

this we mean the following fa
t. Using a Hamiltonian surfa
e term to 
al
ulate

a 
harge means that we are 
anoni
ally evolving the initial hypersurfa
e S

0

,

whi
h satis�es 
ertain (�xed) asymptoti
 
onditions. But 
anoni
al evolution

does not guarantee that the initial asymptoti
 
onditions will be satis�ed by

the su

essive hypersurfa
es, for the asymptoti
 
onditions where studied by

means of Lie transport, whi
h di�ers in general from Hamiltonian transport.

Thus we have this vi
ious 
ir
le: from 
ertain asymptoti
 
onditions we �nd

asymptoti
 symmetries whose generators does not preserve those 
onditions

(under Hamiltonian transport). This is a typi
ally Hamiltonian problem.

Counterterms

The 
al
ulation of the 
harges by means of the quasilo
al formalism has

allowed us to analyse two di�erent kinds of 
ounterterm used in the literature:

the ba
kground-spa
e 
ounterterm and the intrinsi
 
ounterterm.

The �rst does not yields anomalous results at �nite (q.v. Se
. 2.3.1), but


annot be 
omputed, in prin
iple, in all 
ases.

The se
ond does yield anomalous results at �nite instead, and in the 
ase of

a dilaton gravity theory it 
annot be univo
ally determined by renormalisation


onditions (q.v. Se
. 3.2.3 and the indetermination of the 
onstant C

2

).

3

Note added in translation: See Chap. 1., Note 1.
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A sort of 
on
lusion

When
e, ex
eptionally, one draws nothing

[In the original, Italian version of the present thesis, this se
tion is an ex
erpt

from Robert Musil's Der Mann ohne Eigens
haften, Part II, 72., as translated

into Italian by Anita Rho [48℄. It has not been translated in the present English

version in a

ount of the translator's in
ompeten
e.℄
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